--- license: apache-2.0 tags: - generated_from_trainer - HC3 - chatGPT - assistant datasets: - pszemraj/HC3-textgen-qa metrics: - accuracy inference: false base_model: EleutherAI/pythia-6.9b-deduped --- # pythia-6.9b-deduped for general QA Open In Colab This model is a fine-tuned version of [EleutherAI/pythia-6.9b-deduped](https://huggingface.co/EleutherAI/pythia-6.9b-deduped) on the pszemraj/HC3-textgen-qa dataset. It achieves the following results on the evaluation set: - Loss: 1.2372 - Accuracy: 0.6769 - perplexity: 3.446 ## Model description Text generation model trained on the HC3 text data of human questions + chatGPT answers. ![example](https://i.imgur.com/iMqPDXU.png) ### Usage Install necessary packages for inference (_unless you have a big boi GPU_) ```bash pip install -U -q transformers bitsandbytes accelerate ``` Basic inference example: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("pszemraj/pythia-6.9b-HC3") model = AutoModelForCausalLM.from_pretrained( "pszemraj/pythia-6.9b-HC3", load_in_8bit=True, device_map="auto" ) # shards are ~4GB each, there are eight total prompt = "I was wondering how much wood a woodchuck could chuck? " inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate( **inputs, max_new_tokens=300 ) # default generation config (+ 300 tokens) result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] result = result.split("")[0].strip() import pprint as pp pp.pprint(result) ``` The defautl `GenerationConfig` uses contrastive search with `top_k=4` and `penalty_alpha=0.6`. For more information on inference and parameters to use, see [the transformers docs](https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies). ## Intended uses & limitations - **Intended use:** research/exploration into comparing RLHF tuning vs. "guided"/specific tuning on "quality" datasets/responses of _"what the human would want as answer anyway"_ - This is **not** trained/fine-tuned with RLHF and therefore will not be as helpful/generalizable/safe as chatGPT (_outside of the fact that this model is ~30x smaller_) ## Training and evaluation data ```yaml model-index: - name: pythia-6.9b-hc3-qa-assistant results: - task: name: Causal Language Modeling type: text-generation dataset: name: pszemraj/HC3-textgen-qa metrics: - name: Accuracy type: accuracy value: 0.6768941789814655 ``` ## Training procedure Two epochs on the `pszemraj/HC3-textgen-qa` dataset. ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2598 | 0.99 | 79 | 1.3291 | 0.6496 | | 0.7446 | 1.99 | 158 | 1.2372 | 0.6769 | # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__pythia-6.9b-HC3) | Metric | Value | |-----------------------|---------------------------| | Avg. | 33.33 | | ARC (25-shot) | 36.52 | | HellaSwag (10-shot) | 61.76 | | MMLU (5-shot) | 26.94 | | TruthfulQA (0-shot) | 45.05 | | Winogrande (5-shot) | 60.77 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 2.23 |