--- license: apache-2.0 base_model: pszemraj/random-mega-ar-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: PT-random-mega-ar-large-simple_wikipedia_LM-main-2048 results: [] --- # PT-random-mega-ar-large-simple_wikipedia_LM-main-2048 This model is a fine-tuned version of [pszemraj/random-mega-ar-large](https://huggingface.co/pszemraj/random-mega-ar-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3412 - Accuracy: 0.4360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 1 - seed: 80085 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.2245 | 0.11 | 100 | 6.9372 | 0.0711 | | 6.6575 | 0.22 | 200 | 6.2335 | 0.1853 | | 5.9406 | 0.34 | 300 | 5.3724 | 0.2635 | | 5.4452 | 0.45 | 400 | 4.9243 | 0.2940 | | 5.2524 | 0.56 | 500 | 4.6568 | 0.3172 | | 4.7862 | 0.67 | 600 | 4.4488 | 0.3347 | | 4.7132 | 0.79 | 700 | 4.2699 | 0.3481 | | 4.6601 | 0.9 | 800 | 4.1502 | 0.3582 | | 4.5067 | 1.01 | 900 | 4.0461 | 0.3681 | | 4.4465 | 1.12 | 1000 | 3.9488 | 0.3773 | | 4.4493 | 1.24 | 1100 | 3.8681 | 0.3833 | | 4.3136 | 1.35 | 1200 | 3.8039 | 0.3897 | | 4.2978 | 1.46 | 1300 | 3.7373 | 0.3956 | | 4.0475 | 1.57 | 1400 | 3.6874 | 0.4003 | | 4.1328 | 1.68 | 1500 | 3.6339 | 0.4061 | | 4.0758 | 1.8 | 1600 | 3.5866 | 0.4115 | | 3.8489 | 1.91 | 1700 | 3.5438 | 0.4163 | | 3.913 | 2.02 | 1800 | 3.5136 | 0.4192 | | 3.7746 | 2.13 | 1900 | 3.4860 | 0.4226 | | 3.9547 | 2.25 | 2000 | 3.4505 | 0.4255 | | 3.9726 | 2.36 | 2100 | 3.4283 | 0.4269 | | 3.7546 | 2.47 | 2200 | 3.3999 | 0.4298 | | 3.7442 | 2.58 | 2300 | 3.3820 | 0.4317 | | 3.6848 | 2.7 | 2400 | 3.3687 | 0.4333 | | 3.5491 | 2.81 | 2500 | 3.3531 | 0.4349 | | 3.9563 | 2.92 | 2600 | 3.3412 | 0.4360 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230907+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3