psakamoori commited on
Commit
8a69132
·
1 Parent(s): 1db723d

Sample app code with OpenVINO inference

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from speechbrain.inference.interfaces import foreign_class
2
+ from custom_interface import CustomEncoderWav2vec2Classifier
3
+ from speechbrain.pretrained import EncoderClassifier
4
+
5
+ # Function in SpeechBrain to load and use custom PyTorch models
6
+ classifier = foreign_class(
7
+ source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
8
+ pymodule_file="custom_interface.py",
9
+ classname="CustomEncoderWav2vec2Classifier"
10
+ )
11
+
12
+ # Model checkpoint files
13
+ checkpoint = EncoderClassifier.from_hparams(
14
+ source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
15
+ savedir="./" # Directory to save the model
16
+ )
17
+
18
+ # Convert hparams to a dictionary
19
+ hparams_dict = vars(checkpoint.hparams)
20
+
21
+ # OpenVINO inference optimization parameters
22
+ device = "cpu"
23
+ ov_opts = {"device_name": device, "PERFORMANCE_HINT": "LATENCY"}
24
+
25
+ instance = CustomEncoderWav2vec2Classifier(modules=checkpoint.mods,
26
+ hparams=hparams_dict, model=classifier.mods["wav2vec2"].model,
27
+ audio_file_path="speechbrain/emotion-recognition-wav2vec2-IEMOCAP/anger.wav",
28
+ backend="openvino",
29
+ ov_opts=ov_opts,
30
+ save_ov_model=False)
31
+
32
+
33
+ # OpenVINO inference
34
+ print("=" * 30)
35
+ print(f"[INFO] Inference Device: {ov_opts['device_name']}")
36
+ print("=" * 30)
37
+ print("\n[INFO] Performing OpenVINO inference...")
38
+ out_prob, score, index, text_lab = instance.classify_file("speechbrain/emotion-recognition-wav2vec2-IEMOCAP/anger.wav")
39
+ print(f"[RESULT] OpenVINO Inference Output: {text_lab[index-1]}")