File size: 1,846 Bytes
4d3ee42 949db59 4d3ee42 321764a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
language:
- en
inference: false
pipeline_tag: token-classification
tags:
- ner
- bert
license: mit
datasets:
- conll2003
base_model: dslim/bert-base-NER
---
# ONNX version of dslim/bert-base-NER
**This model is a conversion of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
`bert-base-NER` is a fine-tuned BERT model that is ready to use for Named Entity Recognition and achieves state-of-the-art performance for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).
Specifically, this model is a `bert-base-cased` model that was fine-tuned on the English version of the standard `CoNLL-2003 Named Entity Recognition` dataset.
## Usage
Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
```python
from optimum.onnxruntime import ORTModelForTokenClassification
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("laiyer/bert-base-NER-onnx")
model = ORTModelForTokenClassification.from_pretrained("laiyer/bert-base-NER-onnx")
ner = pipeline(
task="ner",
model=model,
tokenizer=tokenizer,
)
ner_output = ner("My name is John Doe.")
print(ner_output)
```
### LLM Guard
[Anonymize scanner](https://llm-guard.com/input_scanners/anonymize/)
## Community
Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions,
or engage in discussions about LLM security!
<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w"><img src="https://github.com/laiyer-ai/llm-guard/blob/main/docs/assets/join-our-slack-community.png?raw=true" width="200"></a>
|