Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +19 -19
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.32 +/- 0.13
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cdafa69c4eb6d73ae869f97087f7db6c0b9b8e2d623ce056fc41b95640dcdfa
|
3 |
+
size 107991
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -40,36 +40,36 @@
|
|
40 |
"bounded_above": "[ True True True]",
|
41 |
"_np_random": null
|
42 |
},
|
43 |
-
"n_envs":
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate":
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[-0.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
-
":serialized:": "
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "
|
70 |
-
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa456ba9430>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa456ba8540>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
40 |
"bounded_above": "[ True True True]",
|
41 |
"_np_random": null
|
42 |
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679041924149378853,
|
50 |
+
"learning_rate": 5e-05,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Cjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiFF2Ppr9PTzIVQ8/iFF2Ppr9PTzIVQ8/iFF2Ppr9PTzIVQ8/iFF2Ppr9PTzIVQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl8LSu/AgeL8qtbY/Zje2P80Vpz+FS1U/v1tNv8mVBb/Mt4q/a4a/vuw6Gr9QgLc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.24054539 0.01159611 0.55990267]\n [0.24054539 0.01159611 0.55990267]\n [0.24054539 0.01159611 0.55990267]\n [0.24054539 0.01159611 0.55990267]]",
|
60 |
+
"desired_goal": "[[-0.00643189 -0.9692526 1.4274037 ]\n [ 1.4235656 1.3053528 0.8331836 ]\n [-0.8021812 -0.5218168 -1.083734 ]\n [-0.3740724 -0.6024616 1.4336033 ]]",
|
61 |
+
"observation": "[[0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]\n [0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]\n [0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]\n [0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr4gIPl/wib2z4aY9bkVLPPpD6T1Imx8+HiafvV6RmL3zmr49DuTLPVaRlL2whjs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.1333339 -0.067353 0.08148517]\n [ 0.01240669 0.11389919 0.15586579]\n [-0.07770942 -0.07449602 0.09306898]\n [ 0.09955607 -0.07254283 0.18313098]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZFqbxvZa97+UhpRSlIwBbJRLMowBdJRHQKZAsHu7YkF1fZQoaAZoCWgPQwhRaFn3jwX1v5SGlFKUaBVLMmgWR0CmQHAsK9f1dX2UKGgGaAloD0MI0CUceosH97+UhpRSlGgVSzJoFkdApkAyxoqTbHV9lChoBmgJaA9DCBVvZB75A/i/lIaUUpRoFUsyaBZHQKY/9Sx7iQ11fZQoaAZoCWgPQwjf3coSneX8v5SGlFKUaBVLMmgWR0CmQZHbqQiidX2UKGgGaAloD0MIIhyz7Elg+7+UhpRSlGgVSzJoFkdApkFRvBJqZnV9lChoBmgJaA9DCONQvwtbM/q/lIaUUpRoFUsyaBZHQKZBFHXmNip1fZQoaAZoCWgPQwig4GJFDab6v5SGlFKUaBVLMmgWR0CmQNcGkep5dX2UKGgGaAloD0MI7MGk+PgE+7+UhpRSlGgVSzJoFkdApkKwjfNzKnV9lChoBmgJaA9DCBr8/WK2JPi/lIaUUpRoFUsyaBZHQKZCcHmA9V51fZQoaAZoCWgPQwgczZGVX8b8v5SGlFKUaBVLMmgWR0CmQjQjt5UtdX2UKGgGaAloD0MI91rQe2MI+b+UhpRSlGgVSzJoFkdApkH2mgrYoXV9lChoBmgJaA9DCKYPXVDf8vq/lIaUUpRoFUsyaBZHQKZEE7p3X7N1fZQoaAZoCWgPQwhSuB6F6xH4v5SGlFKUaBVLMmgWR0CmQ9R28qWkdX2UKGgGaAloD0MIFf4Mb9Yg97+UhpRSlGgVSzJoFkdApkOXhIe5nXV9lChoBmgJaA9DCE+uKZDZ2f2/lIaUUpRoFUsyaBZHQKZDWhQm/nJ1fZQoaAZoCWgPQwgIrBxaZHv2v5SGlFKUaBVLMmgWR0CmRXqD9OyndX2UKGgGaAloD0MIMiHmkqot+b+UhpRSlGgVSzJoFkdApkU7hP0qY3V9lChoBmgJaA9DCCTW4lMAjPy/lIaUUpRoFUsyaBZHQKZE/tJnQIF1fZQoaAZoCWgPQwhoXDgQkkX1v5SGlFKUaBVLMmgWR0CmRMGBvrGBdX2UKGgGaAloD0MIIAn7dhLR97+UhpRSlGgVSzJoFkdApkbwfjjrA3V9lChoBmgJaA9DCE7RkVz+Q/u/lIaUUpRoFUsyaBZHQKZGsLYwqRV1fZQoaAZoCWgPQwjTiJl9HmP3v5SGlFKUaBVLMmgWR0CmRnPBacI7dX2UKGgGaAloD0MIgQTFjzG3+r+UhpRSlGgVSzJoFkdApkY245Lh73V9lChoBmgJaA9DCJ6WH7jK0/W/lIaUUpRoFUsyaBZHQKZIYFCb+cZ1fZQoaAZoCWgPQwjgDtQpj276v5SGlFKUaBVLMmgWR0CmSCDKxLTQdX2UKGgGaAloD0MIndmu0AeL+r+UhpRSlGgVSzJoFkdApkfkCeVcEHV9lChoBmgJaA9DCLPqc7UV+/e/lIaUUpRoFUsyaBZHQKZHprGBFux1fZQoaAZoCWgPQwgDe0ykNJv8v5SGlFKUaBVLMmgWR0CmSdb+cYqHdX2UKGgGaAloD0MI5rD7juHx+b+UhpRSlGgVSzJoFkdApkmXUSZjQXV9lChoBmgJaA9DCAEz38FP3Pm/lIaUUpRoFUsyaBZHQKZJWv9LpRp1fZQoaAZoCWgPQwi/gcmNIqv4v5SGlFKUaBVLMmgWR0CmSR2jXWe6dX2UKGgGaAloD0MILquwGeACAcCUhpRSlGgVSzJoFkdApktG7aqS5nV9lChoBmgJaA9DCHRDU3b6wfq/lIaUUpRoFUsyaBZHQKZLB1J17pp1fZQoaAZoCWgPQwip3a8CfDf5v5SGlFKUaBVLMmgWR0CmSsrL6k6+dX2UKGgGaAloD0MIceZXc4Ag97+UhpRSlGgVSzJoFkdApkqNZNfw7XV9lChoBmgJaA9DCCMShZZ1v/e/lIaUUpRoFUsyaBZHQKZMylv60pp1fZQoaAZoCWgPQwhweEFEahr3v5SGlFKUaBVLMmgWR0CmTIrC3w1BdX2UKGgGaAloD0MIxhUXR+Um9b+UhpRSlGgVSzJoFkdApkxOD+R5knV9lChoBmgJaA9DCNyhYTHqmvu/lIaUUpRoFUsyaBZHQKZMELk0aZR1fZQoaAZoCWgPQwjoFORnIxf7v5SGlFKUaBVLMmgWR0CmThxYigTRdX2UKGgGaAloD0MIEVfO3hmt+b+UhpRSlGgVSzJoFkdApk3cCvHLinV9lChoBmgJaA9DCI0mF2Ngnfy/lIaUUpRoFUsyaBZHQKZNnxSYPXl1fZQoaAZoCWgPQwjC+j+H+bL5v5SGlFKUaBVLMmgWR0CmTWFeWv8qdX2UKGgGaAloD0MIIc1YNJ2d+r+UhpRSlGgVSzJoFkdApk77YNAkcHV9lChoBmgJaA9DCLGoiNNJdvW/lIaUUpRoFUsyaBZHQKZOu7GvOhV1fZQoaAZoCWgPQwiJ78SsFwP9v5SGlFKUaBVLMmgWR0CmTn9gv115dX2UKGgGaAloD0MIEtxI2SLp+r+UhpRSlGgVSzJoFkdApk5ClxffGnV9lChoBmgJaA9DCNDwZg3el/i/lIaUUpRoFUsyaBZHQKZP2y4Wk8B1fZQoaAZoCWgPQwgWTPxR1Nn0v5SGlFKUaBVLMmgWR0CmT5s0YTCcdX2UKGgGaAloD0MIXCGsxhIW9r+UhpRSlGgVSzJoFkdApk9d4FA3UHV9lChoBmgJaA9DCIGyKVd41/m/lIaUUpRoFUsyaBZHQKZPIC17Y051fZQoaAZoCWgPQwiGcw0zNB70v5SGlFKUaBVLMmgWR0CmUMQE6kqMdX2UKGgGaAloD0MIO44fKo3Y/L+UhpRSlGgVSzJoFkdAplCDtRekYXV9lChoBmgJaA9DCJPfopOlVvi/lIaUUpRoFUsyaBZHQKZQRmOlwcZ1fZQoaAZoCWgPQwhPyqSGNsD9v5SGlFKUaBVLMmgWR0CmUAh1klNUdX2UKGgGaAloD0MI6dFUT+af+7+UhpRSlGgVSzJoFkdAplGq19fCynV9lChoBmgJaA9DCECH+fICbPq/lIaUUpRoFUsyaBZHQKZRaois4kx1fZQoaAZoCWgPQwiTUWUYd0P4v5SGlFKUaBVLMmgWR0CmUS0/4ZdfdX2UKGgGaAloD0MIZRniWBd39r+UhpRSlGgVSzJoFkdAplDvS2H+InV9lChoBmgJaA9DCKbTug1qv/i/lIaUUpRoFUsyaBZHQKZSlg3tKI11fZQoaAZoCWgPQwjVB5J3DqX1v5SGlFKUaBVLMmgWR0CmUlWoWHk+dX2UKGgGaAloD0MIon+CixX187+UhpRSlGgVSzJoFkdAplIYlY2bX3V9lChoBmgJaA9DCDCbAMPy5/u/lIaUUpRoFUsyaBZHQKZR2yt3fQ91fZQoaAZoCWgPQwjLZ3ke3F34v5SGlFKUaBVLMmgWR0CmU3M3hn8LdX2UKGgGaAloD0MIBARz9Pi99r+UhpRSlGgVSzJoFkdAplMzCWNWEXV9lChoBmgJaA9DCPLR4oxhjvW/lIaUUpRoFUsyaBZHQKZS9aWX1J11fZQoaAZoCWgPQwhCtFa0Oc7xv5SGlFKUaBVLMmgWR0CmUrewkgOjdX2UKGgGaAloD0MIc/IiE/Ar+b+UhpRSlGgVSzJoFkdAplRRmseXA3V9lChoBmgJaA9DCI4fKo2Ymfi/lIaUUpRoFUsyaBZHQKZUEay8jA11fZQoaAZoCWgPQwhpVrYPecv+v5SGlFKUaBVLMmgWR0CmU9RKg7HRdX2UKGgGaAloD0MIFyzVBbwM/L+UhpRSlGgVSzJoFkdAplOWVmjCYXV9lChoBmgJaA9DCOIC0Chdevm/lIaUUpRoFUsyaBZHQKZVN12aDwp1fZQoaAZoCWgPQwgIO8WqQZj+v5SGlFKUaBVLMmgWR0CmVPdHtnf3dX2UKGgGaAloD0MImYI1zqaj/L+UhpRSlGgVSzJoFkdAplS5/LDAJ3V9lChoBmgJaA9DCIV3uYjvBPS/lIaUUpRoFUsyaBZHQKZUfEWqLjx1fZQoaAZoCWgPQwhF1ESfjzL6v5SGlFKUaBVLMmgWR0CmVhYPXkHVdX2UKGgGaAloD0MIYqOs30xM97+UhpRSlGgVSzJoFkdAplXV7BwdbXV9lChoBmgJaA9DCCJxj6UP3fW/lIaUUpRoFUsyaBZHQKZVmJcgQpZ1fZQoaAZoCWgPQwj203/W/Dj4v5SGlFKUaBVLMmgWR0CmVVrDQ7cPdX2UKGgGaAloD0MIUiegibAh/L+UhpRSlGgVSzJoFkdAplb4KKHfuXV9lChoBmgJaA9DCE27mGa6V/e/lIaUUpRoFUsyaBZHQKZWt++/QBx1fZQoaAZoCWgPQwhH5pE/GHj2v5SGlFKUaBVLMmgWR0CmVnrTx5LRdX2UKGgGaAloD0MIz9csl40O+b+UhpRSlGgVSzJoFkdAplY9M23rlnV9lChoBmgJaA9DCNALdy6MtPq/lIaUUpRoFUsyaBZHQKZX34s3AEd1fZQoaAZoCWgPQwjrjzAMWHL8v5SGlFKUaBVLMmgWR0CmV59AxBVudX2UKGgGaAloD0MIBn+/mC2Z+b+UhpRSlGgVSzJoFkdApldh3gUDdXV9lChoBmgJaA9DCL9EvHX+rfm/lIaUUpRoFUsyaBZHQKZXJBMSK3x1fZQoaAZoCWgPQwjwp8ZLN8n3v5SGlFKUaBVLMmgWR0CmWMKjafz0dX2UKGgGaAloD0MI5gMCnUmb/r+UhpRSlGgVSzJoFkdApliCcXm/33V9lChoBmgJaA9DCE3bv7LSZPq/lIaUUpRoFUsyaBZHQKZYRSKm8/V1fZQoaAZoCWgPQwhfRrHc0ir8v5SGlFKUaBVLMmgWR0CmWAdFnZkDdX2UKGgGaAloD0MIsK4K1GKw+L+UhpRSlGgVSzJoFkdAplmqGDcuanV9lChoBmgJaA9DCKMh41EqIfe/lIaUUpRoFUsyaBZHQKZZacS5AhV1fZQoaAZoCWgPQwhwXMZNDbT1v5SGlFKUaBVLMmgWR0CmWSxiw0O3dX2UKGgGaAloD0MIaCPXTSlv+b+UhpRSlGgVSzJoFkdAplju8IzFdnV9lChoBmgJaA9DCA5KmGn7F/u/lIaUUpRoFUsyaBZHQKZakGTs6aN1fZQoaAZoCWgPQwjlm21uTM/4v5SGlFKUaBVLMmgWR0CmWlALiMo+dX2UKGgGaAloD0MItMcL6fBQ87+UhpRSlGgVSzJoFkdAploSrBCUo3V9lChoBmgJaA9DCEW6n1OQX/q/lIaUUpRoFUsyaBZHQKZZ1K0UoKF1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 50000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b359c28059ffacfc98a7cf85cfbac2b911054851091b8f5a39a4d1bb311863a
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdbfc4fc7ac103e21718d613b1ee83d7317eefe64af3f4d83796c8176865f590
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f31e9718670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f31e9719680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679004800352021551, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAplWrPh+0+L1A2RI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAZ2ZDv1iWqT9sAUq/lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAACmVas+H7T4vUDZEj+d9ug8V5kWvAKOAT2UaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.33463782 -0.1214373 0.5736275 ]]", "desired_goal": "[[-0.7632813 1.3249006 -0.7890842]]", "observation": "[[ 0.33463782 -0.1214373 0.5736275 0.02843791 -0.00919183 0.03162957]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAA7WO4PUvX7r1V4ok+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09003434 -0.11662158 0.2693049 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 235000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa456ba9430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa456ba8540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679041924149378853, "learning_rate": 5e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Cjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiFF2Ppr9PTzIVQ8/iFF2Ppr9PTzIVQ8/iFF2Ppr9PTzIVQ8/iFF2Ppr9PTzIVQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl8LSu/AgeL8qtbY/Zje2P80Vpz+FS1U/v1tNv8mVBb/Mt4q/a4a/vuw6Gr9QgLc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyIUXY+mv09PMhVDz9A7JQ8ltYtOvPo5DyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.24054539 0.01159611 0.55990267]\n [0.24054539 0.01159611 0.55990267]\n [0.24054539 0.01159611 0.55990267]\n [0.24054539 0.01159611 0.55990267]]", "desired_goal": "[[-0.00643189 -0.9692526 1.4274037 ]\n [ 1.4235656 1.3053528 0.8331836 ]\n [-0.8021812 -0.5218168 -1.083734 ]\n [-0.3740724 -0.6024616 1.4336033 ]]", "observation": "[[0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]\n [0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]\n [0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]\n [0.24054539 0.01159611 0.55990267 0.01817906 0.00066314 0.02794311]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr4gIPl/wib2z4aY9bkVLPPpD6T1Imx8+HiafvV6RmL3zmr49DuTLPVaRlL2whjs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1333339 -0.067353 0.08148517]\n [ 0.01240669 0.11389919 0.15586579]\n [-0.07770942 -0.07449602 0.09306898]\n [ 0.09955607 -0.07254283 0.18313098]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZFqbxvZa97+UhpRSlIwBbJRLMowBdJRHQKZAsHu7YkF1fZQoaAZoCWgPQwhRaFn3jwX1v5SGlFKUaBVLMmgWR0CmQHAsK9f1dX2UKGgGaAloD0MI0CUceosH97+UhpRSlGgVSzJoFkdApkAyxoqTbHV9lChoBmgJaA9DCBVvZB75A/i/lIaUUpRoFUsyaBZHQKY/9Sx7iQ11fZQoaAZoCWgPQwjf3coSneX8v5SGlFKUaBVLMmgWR0CmQZHbqQiidX2UKGgGaAloD0MIIhyz7Elg+7+UhpRSlGgVSzJoFkdApkFRvBJqZnV9lChoBmgJaA9DCONQvwtbM/q/lIaUUpRoFUsyaBZHQKZBFHXmNip1fZQoaAZoCWgPQwig4GJFDab6v5SGlFKUaBVLMmgWR0CmQNcGkep5dX2UKGgGaAloD0MI7MGk+PgE+7+UhpRSlGgVSzJoFkdApkKwjfNzKnV9lChoBmgJaA9DCBr8/WK2JPi/lIaUUpRoFUsyaBZHQKZCcHmA9V51fZQoaAZoCWgPQwgczZGVX8b8v5SGlFKUaBVLMmgWR0CmQjQjt5UtdX2UKGgGaAloD0MI91rQe2MI+b+UhpRSlGgVSzJoFkdApkH2mgrYoXV9lChoBmgJaA9DCKYPXVDf8vq/lIaUUpRoFUsyaBZHQKZEE7p3X7N1fZQoaAZoCWgPQwhSuB6F6xH4v5SGlFKUaBVLMmgWR0CmQ9R28qWkdX2UKGgGaAloD0MIFf4Mb9Yg97+UhpRSlGgVSzJoFkdApkOXhIe5nXV9lChoBmgJaA9DCE+uKZDZ2f2/lIaUUpRoFUsyaBZHQKZDWhQm/nJ1fZQoaAZoCWgPQwgIrBxaZHv2v5SGlFKUaBVLMmgWR0CmRXqD9OyndX2UKGgGaAloD0MIMiHmkqot+b+UhpRSlGgVSzJoFkdApkU7hP0qY3V9lChoBmgJaA9DCCTW4lMAjPy/lIaUUpRoFUsyaBZHQKZE/tJnQIF1fZQoaAZoCWgPQwhoXDgQkkX1v5SGlFKUaBVLMmgWR0CmRMGBvrGBdX2UKGgGaAloD0MIIAn7dhLR97+UhpRSlGgVSzJoFkdApkbwfjjrA3V9lChoBmgJaA9DCE7RkVz+Q/u/lIaUUpRoFUsyaBZHQKZGsLYwqRV1fZQoaAZoCWgPQwjTiJl9HmP3v5SGlFKUaBVLMmgWR0CmRnPBacI7dX2UKGgGaAloD0MIgQTFjzG3+r+UhpRSlGgVSzJoFkdApkY245Lh73V9lChoBmgJaA9DCJ6WH7jK0/W/lIaUUpRoFUsyaBZHQKZIYFCb+cZ1fZQoaAZoCWgPQwjgDtQpj276v5SGlFKUaBVLMmgWR0CmSCDKxLTQdX2UKGgGaAloD0MIndmu0AeL+r+UhpRSlGgVSzJoFkdApkfkCeVcEHV9lChoBmgJaA9DCLPqc7UV+/e/lIaUUpRoFUsyaBZHQKZHprGBFux1fZQoaAZoCWgPQwgDe0ykNJv8v5SGlFKUaBVLMmgWR0CmSdb+cYqHdX2UKGgGaAloD0MI5rD7juHx+b+UhpRSlGgVSzJoFkdApkmXUSZjQXV9lChoBmgJaA9DCAEz38FP3Pm/lIaUUpRoFUsyaBZHQKZJWv9LpRp1fZQoaAZoCWgPQwi/gcmNIqv4v5SGlFKUaBVLMmgWR0CmSR2jXWe6dX2UKGgGaAloD0MILquwGeACAcCUhpRSlGgVSzJoFkdApktG7aqS5nV9lChoBmgJaA9DCHRDU3b6wfq/lIaUUpRoFUsyaBZHQKZLB1J17pp1fZQoaAZoCWgPQwip3a8CfDf5v5SGlFKUaBVLMmgWR0CmSsrL6k6+dX2UKGgGaAloD0MIceZXc4Ag97+UhpRSlGgVSzJoFkdApkqNZNfw7XV9lChoBmgJaA9DCCMShZZ1v/e/lIaUUpRoFUsyaBZHQKZMylv60pp1fZQoaAZoCWgPQwhweEFEahr3v5SGlFKUaBVLMmgWR0CmTIrC3w1BdX2UKGgGaAloD0MIxhUXR+Um9b+UhpRSlGgVSzJoFkdApkxOD+R5knV9lChoBmgJaA9DCNyhYTHqmvu/lIaUUpRoFUsyaBZHQKZMELk0aZR1fZQoaAZoCWgPQwjoFORnIxf7v5SGlFKUaBVLMmgWR0CmThxYigTRdX2UKGgGaAloD0MIEVfO3hmt+b+UhpRSlGgVSzJoFkdApk3cCvHLinV9lChoBmgJaA9DCI0mF2Ngnfy/lIaUUpRoFUsyaBZHQKZNnxSYPXl1fZQoaAZoCWgPQwjC+j+H+bL5v5SGlFKUaBVLMmgWR0CmTWFeWv8qdX2UKGgGaAloD0MIIc1YNJ2d+r+UhpRSlGgVSzJoFkdApk77YNAkcHV9lChoBmgJaA9DCLGoiNNJdvW/lIaUUpRoFUsyaBZHQKZOu7GvOhV1fZQoaAZoCWgPQwiJ78SsFwP9v5SGlFKUaBVLMmgWR0CmTn9gv115dX2UKGgGaAloD0MIEtxI2SLp+r+UhpRSlGgVSzJoFkdApk5ClxffGnV9lChoBmgJaA9DCNDwZg3el/i/lIaUUpRoFUsyaBZHQKZP2y4Wk8B1fZQoaAZoCWgPQwgWTPxR1Nn0v5SGlFKUaBVLMmgWR0CmT5s0YTCcdX2UKGgGaAloD0MIXCGsxhIW9r+UhpRSlGgVSzJoFkdApk9d4FA3UHV9lChoBmgJaA9DCIGyKVd41/m/lIaUUpRoFUsyaBZHQKZPIC17Y051fZQoaAZoCWgPQwiGcw0zNB70v5SGlFKUaBVLMmgWR0CmUMQE6kqMdX2UKGgGaAloD0MIO44fKo3Y/L+UhpRSlGgVSzJoFkdAplCDtRekYXV9lChoBmgJaA9DCJPfopOlVvi/lIaUUpRoFUsyaBZHQKZQRmOlwcZ1fZQoaAZoCWgPQwhPyqSGNsD9v5SGlFKUaBVLMmgWR0CmUAh1klNUdX2UKGgGaAloD0MI6dFUT+af+7+UhpRSlGgVSzJoFkdAplGq19fCynV9lChoBmgJaA9DCECH+fICbPq/lIaUUpRoFUsyaBZHQKZRaois4kx1fZQoaAZoCWgPQwiTUWUYd0P4v5SGlFKUaBVLMmgWR0CmUS0/4ZdfdX2UKGgGaAloD0MIZRniWBd39r+UhpRSlGgVSzJoFkdAplDvS2H+InV9lChoBmgJaA9DCKbTug1qv/i/lIaUUpRoFUsyaBZHQKZSlg3tKI11fZQoaAZoCWgPQwjVB5J3DqX1v5SGlFKUaBVLMmgWR0CmUlWoWHk+dX2UKGgGaAloD0MIon+CixX187+UhpRSlGgVSzJoFkdAplIYlY2bX3V9lChoBmgJaA9DCDCbAMPy5/u/lIaUUpRoFUsyaBZHQKZR2yt3fQ91fZQoaAZoCWgPQwjLZ3ke3F34v5SGlFKUaBVLMmgWR0CmU3M3hn8LdX2UKGgGaAloD0MIBARz9Pi99r+UhpRSlGgVSzJoFkdAplMzCWNWEXV9lChoBmgJaA9DCPLR4oxhjvW/lIaUUpRoFUsyaBZHQKZS9aWX1J11fZQoaAZoCWgPQwhCtFa0Oc7xv5SGlFKUaBVLMmgWR0CmUrewkgOjdX2UKGgGaAloD0MIc/IiE/Ar+b+UhpRSlGgVSzJoFkdAplRRmseXA3V9lChoBmgJaA9DCI4fKo2Ymfi/lIaUUpRoFUsyaBZHQKZUEay8jA11fZQoaAZoCWgPQwhpVrYPecv+v5SGlFKUaBVLMmgWR0CmU9RKg7HRdX2UKGgGaAloD0MIFyzVBbwM/L+UhpRSlGgVSzJoFkdAplOWVmjCYXV9lChoBmgJaA9DCOIC0Chdevm/lIaUUpRoFUsyaBZHQKZVN12aDwp1fZQoaAZoCWgPQwgIO8WqQZj+v5SGlFKUaBVLMmgWR0CmVPdHtnf3dX2UKGgGaAloD0MImYI1zqaj/L+UhpRSlGgVSzJoFkdAplS5/LDAJ3V9lChoBmgJaA9DCIV3uYjvBPS/lIaUUpRoFUsyaBZHQKZUfEWqLjx1fZQoaAZoCWgPQwhF1ESfjzL6v5SGlFKUaBVLMmgWR0CmVhYPXkHVdX2UKGgGaAloD0MIYqOs30xM97+UhpRSlGgVSzJoFkdAplXV7BwdbXV9lChoBmgJaA9DCCJxj6UP3fW/lIaUUpRoFUsyaBZHQKZVmJcgQpZ1fZQoaAZoCWgPQwj203/W/Dj4v5SGlFKUaBVLMmgWR0CmVVrDQ7cPdX2UKGgGaAloD0MIUiegibAh/L+UhpRSlGgVSzJoFkdAplb4KKHfuXV9lChoBmgJaA9DCE27mGa6V/e/lIaUUpRoFUsyaBZHQKZWt++/QBx1fZQoaAZoCWgPQwhH5pE/GHj2v5SGlFKUaBVLMmgWR0CmVnrTx5LRdX2UKGgGaAloD0MIz9csl40O+b+UhpRSlGgVSzJoFkdAplY9M23rlnV9lChoBmgJaA9DCNALdy6MtPq/lIaUUpRoFUsyaBZHQKZX34s3AEd1fZQoaAZoCWgPQwjrjzAMWHL8v5SGlFKUaBVLMmgWR0CmV59AxBVudX2UKGgGaAloD0MIBn+/mC2Z+b+UhpRSlGgVSzJoFkdApldh3gUDdXV9lChoBmgJaA9DCL9EvHX+rfm/lIaUUpRoFUsyaBZHQKZXJBMSK3x1fZQoaAZoCWgPQwjwp8ZLN8n3v5SGlFKUaBVLMmgWR0CmWMKjafz0dX2UKGgGaAloD0MI5gMCnUmb/r+UhpRSlGgVSzJoFkdApliCcXm/33V9lChoBmgJaA9DCE3bv7LSZPq/lIaUUpRoFUsyaBZHQKZYRSKm8/V1fZQoaAZoCWgPQwhfRrHc0ir8v5SGlFKUaBVLMmgWR0CmWAdFnZkDdX2UKGgGaAloD0MIsK4K1GKw+L+UhpRSlGgVSzJoFkdAplmqGDcuanV9lChoBmgJaA9DCKMh41EqIfe/lIaUUpRoFUsyaBZHQKZZacS5AhV1fZQoaAZoCWgPQwhwXMZNDbT1v5SGlFKUaBVLMmgWR0CmWSxiw0O3dX2UKGgGaAloD0MIaCPXTSlv+b+UhpRSlGgVSzJoFkdAplju8IzFdnV9lChoBmgJaA9DCA5KmGn7F/u/lIaUUpRoFUsyaBZHQKZakGTs6aN1fZQoaAZoCWgPQwjlm21uTM/4v5SGlFKUaBVLMmgWR0CmWlALiMo+dX2UKGgGaAloD0MItMcL6fBQ87+UhpRSlGgVSzJoFkdAploSrBCUo3V9lChoBmgJaA9DCEW6n1OQX/q/lIaUUpRoFUsyaBZHQKZZ1K0UoKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.323669903492555, "std_reward": 0.13368534464816592, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T09:38:27.188988"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5752c70057ca431ab411417939e6fd725a11f9072b1418ea498e9caf50332c10
|
3 |
size 3056
|