propet commited on
Commit
f27a626
·
1 Parent(s): 3e73c42

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1613.84 +/- 308.03
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7992c1408ba0aee2a4e9da71e952a6022ce65ac6975ecc407da8c6aa65af1742
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31e9714ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31e9714f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31e9718040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31e97180d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f31e9718160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f31e97181f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31e9718280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31e9718310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f31e97183a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31e9718430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31e97184c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31e9718550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f31e97194c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678985504570395773,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIF4RD9rXga/jCvnPpEJBEAQYjk/USJtP0ZPvz9yg6W/o7bRPlixY78DVUu/xMEzP6cGuj9jzq09Wac8PmepDkADS6o/U+0lvw8SSz9iBlu/2EL+vo0oR8BC9yM/xMfCvkY6gr+HtCA/WmPpv0h4hT9VZig/Im3Dv69/sL5UIJs/x3i1P+uAsr+Ur8g+wuF1v5rQQj8z9U29g15tv0FecT29SHE/T+DZP1KG0T4/RF5AcRemPzum0z8ApUQ/33Ovv+PV+TyPsce/JVW8P33lqj5GOoK/h7QgP1pj6b82gnW/lYoaPw7qfL8JQ1M+L3mZP5U0iz7+aBU/3qjoPmbEl79hR6I+Il8ev/OKIr6fx64/JaQlP2/Fbr5j6B4/ztiGPLc1iz+qJym/WaMYvNSqgD6ReGy/Cx0hP5zoKT8UwZS/RjqCv73my79aY+m/SHiFP+5Rmj9DYRE/PGm+Po97QT9ODIK/KlKwP11jgT/lKoO/PIYeP4jJh79UH70/W5uivjXLiL+AtqQ/wov8v5TWBT4QbFm/ZvhqPgqAYT/fc3s9TgCnvpkRwD/DMzm/53KHP0Y6gr+HtCA/vWYMPzaCdb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFtgm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIwc/PQAAAAAcLPa/AAAAAPq8x70AAAAAAb/bPwAAAACz0uQ9AAAAALSm4T8AAAAAqT/avAAAAAArpfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCaJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCgUbr0AAAAAQYfcvwAAAADPhl49AAAAAO7G9j8AAAAAv54LvAAAAABapN0/AAAAAL73kr0AAAAAggn7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjcqbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBupg0+AAAAAPx7278AAAAA2HXzvQAAAAAfbOI/AAAAAGaBTj0AAAAA3VD2PwAAAADCA7w8AAAAAK2J+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjoDw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeSdvAAAAADJP/a/AAAAAPbDH7oAAAAArlL3PwAAAAB53PK9AAAAAPvE7T8AAAAAEXQRvgAAAABjGvq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJkdqqlxffKMAWyUTegDjAF0lEdArnwmq1gH/3V9lChoBkdAkLVD9KmKqGgHTegDaAhHQK58t9JBgNR1fZQoaAZHQJgBhwiqyW1oB03oA2gIR0CufmCqZML4dX2UKGgGR0CTIQaCtihGaAdN6ANoCEdArn7OwiaAnXV9lChoBkdAmX+RbnoxH2gHTegDaAhHQK6I0YnfEXN1fZQoaAZHQGvlLiMo+fRoB03oA2gIR0Cuia2pyZKGdX2UKGgGR0CV2wKBd2PlaAdN6ANoCEdAroxFKIznBHV9lChoBkdAlA4HKr7wa2gHTegDaAhHQK6M8A6Mir11fZQoaAZHQJWrR4dIXj5oB03oA2gIR0CumKL26ClKdX2UKGgGR0CIYCN96TnraAdN6ANoCEdArpk2PJaJRHV9lChoBkdAk/Mwxi5NGmgHTegDaAhHQK6a6qlP8AJ1fZQoaAZHQJTUdVWCEpRoB03oA2gIR0Cum157XxvvdX2UKGgGR0Cabs5FPSDzaAdN6ANoCEdArqQ6GcnVonV9lChoBkdAjMRDH4oJA2gHTegDaAhHQK6kyBNEgGN1fZQoaAZHQJTo5d9lVcVoB03oA2gIR0CupnhMajvedX2UKGgGR0CY/gcPvrnlaAdN6ANoCEdArqbl2LYPG3V9lChoBkdAmuRhZEDyOWgHTegDaAhHQK60biWE9Md1fZQoaAZHQJjv/YK6WgRoB03oA2gIR0CutUGUfPondX2UKGgGR0CcadkleF+NaAdN6ANoCEdArrcL8gpz93V9lChoBkdAly7UORT0hGgHTegDaAhHQK63f+y7f511fZQoaAZHQJrpsarFOwhoB03oA2gIR0CuwEqf4AS4dX2UKGgGR0Cb88s7uDzzaAdN6ANoCEdArsDU21lXinV9lChoBkdAm/UVhb4agmgHTegDaAhHQK7ChSkTHsF1fZQoaAZHQJmoR6dDpkhoB03oA2gIR0CuwvAa3qiXdX2UKGgGR0Cc55LRa5f/aAdN6ANoCEdArszaFAVwgnV9lChoBkdAm5v8zyjHn2gHTegDaAhHQK7Nqvllsgx1fZQoaAZHQJoGM163RXxoB03oA2gIR0Cu0HRzaK1pdX2UKGgGR0CfuTYTCcgAaAdN6ANoCEdArtE5jawljXV9lChoBkdAnMkzhHbypmgHTegDaAhHQK7cWnivPkd1fZQoaAZHQJmGKVu76HloB03oA2gIR0Cu3ObLt/nXdX2UKGgGR0Cd34yC4BmxaAdN6ANoCEdArt6ha7mMfnV9lChoBkdAnPAClFc6eWgHTegDaAhHQK7fEL+glGB1fZQoaAZHQJ11uRbKRuFoB03oA2gIR0Cu5/ArYoRadX2UKGgGR0CWIxlWfbsXaAdN6ANoCEdAruh1BlcyFnV9lChoBkdAnO0a4QSSNmgHTegDaAhHQK7qJkupS751fZQoaAZHQJxFw98qnWJoB03oA2gIR0Cu6pOMl1KXdX2UKGgGR0CbnHDDTBqLaAdN6ANoCEdArvg+lyimEXV9lChoBkdAlfrfv4M4LmgHTegDaAhHQK742C6H0sh1fZQoaAZHQJ4+vDTBqKxoB03oA2gIR0Cu+pB86V+rdX2UKGgGR0CVTYhf0EowaAdN6ANoCEdArvr7q2SdOXV9lChoBkdAn3wRNdqtYGgHTegDaAhHQK8D6Uu+RHR1fZQoaAZHQJuHcexOclRoB03oA2gIR0CvBH3QdCE6dX2UKGgGR0CVMmXjENvwaAdN6ANoCEdArwY5Qgs9S3V9lChoBkdAnxU2Pkq+amgHTegDaAhHQK8GruUliSd1fZQoaAZHQIKN9wDNhVloB03oA2gIR0CvEbUd7v5QdX2UKGgGR0CYTrGXokiVaAdN6ANoCEdArxKEV58jRnV9lChoBkdAmPyXPVurImgHTegDaAhHQK8VWcMmWt51fZQoaAZHQJt/ehRIjGFoB03oA2gIR0CvFgtVrAP/dX2UKGgGR0CXQTnctXgcaAdN6ANoCEdAryCPsiSq2nV9lChoBkdAntGF7+kxh2gHTegDaAhHQK8hIRjjJdV1fZQoaAZHQJxxacBltj1oB03oA2gIR0CvIvHJkoWpdX2UKGgGR0CfEjA93bEhaAdN6ANoCEdAryNmGGmDUXV9lChoBkdAnwN80HhS+GgHTegDaAhHQK8sNUfgaWJ1fZQoaAZHQJTCC72+PBBoB03oA2gIR0CvLMf/NqxkdX2UKGgGR0CcgX6Eal1saAdN6ANoCEdAry6iJCSid3V9lChoBkdAn60SRbKRuGgHTegDaAhHQK8vTqRlpXZ1fZQoaAZHQJLSP1Gsmv5oB03oA2gIR0CvPI194NZvdX2UKGgGR0CYNg6j3225aAdN6ANoCEdArz0W+PBBRnV9lChoBkdAlrt05U96kmgHTegDaAhHQK8+xDye7MB1fZQoaAZHQJAnuzJIUahoB03oA2gIR0CvPy+7UXpGdX2UKGgGR0CZytHvMKTjaAdN6ANoCEdAr0f3gFX7tXV9lChoBkdAny2l0HQhOmgHTegDaAhHQK9IjUqhDgJ1fZQoaAZHQJ5Yej9GZu1oB03oA2gIR0CvSntpdrwfdX2UKGgGR0B1VeoS+QEIaAdN6ANoCEdAr0rpC6YmcHV9lChoBkdAmEaC7f51vGgHTegDaAhHQK9V+NyYG+t1fZQoaAZHQJvkm8yvcJtoB03oA2gIR0CvVtzt9hJAdX2UKGgGR0Cd110cfeUIaAdN6ANoCEdAr1mf6yjYZnV9lChoBkdAkMjQUYbbUWgHTegDaAhHQK9aS9QoCuF1fZQoaAZHQJyOsHZ9NN9oB03oA2gIR0CvZAPNeMQ3dX2UKGgGR0CZFFOAiFCcaAdN6ANoCEdAr2SN0JWvKXV9lChoBkdAm9LJl8PWhGgHTegDaAhHQK9mQWQfZEl1fZQoaAZHQJxVe09hZyNoB03oA2gIR0CvZrAgxJumdX2UKGgGR0B+FP0Gu9vkaAdN6ANoCEdAr2/M+3YthHV9lChoBkdAmLh8tTUAk2gHTegDaAhHQK9wV2aDwph1fZQoaAZHQIYyZDArQPZoB03oA2gIR0CvcrkMTewcdX2UKGgGR0CTK20voNd7aAdN6ANoCEdAr3NfYnOSn3V9lChoBkdAfWCDgqEvkGgHTegDaAhHQK+AXWOIZZV1fZQoaAZHQJk/Ee/5+H9oB03oA2gIR0CvgO6hg3LndX2UKGgGR0COllPUKArhaAdN6ANoCEdAr4Kyt9x6wHV9lChoBkdAgSkVstTUAmgHTegDaAhHQK+DHx//ech1fZQoaAZHQJJHJIXj2jBoB03oA2gIR0CvjE/G+9J0dX2UKGgGR8BYPSP2f02+aAdN6ANoCEdAr4zbuF6Av3V9lChoBkdAlfNCtzS1E2gHTegDaAhHQK+OoTJyQxN1fZQoaAZHQIQLqqfe1rtoB03oA2gIR0Cvjw5gXuVpdX2UKGgGR0Ccsd6CUX54aAdN6ANoCEdAr5s6ZYxL03V9lChoBkdAg/w+WOZLI2gHTegDaAhHQK+cJ6CUX551fZQoaAZHQIAWifDk2gpoB03oA2gIR0CvnwH+hoM8dX2UKGgGR0CZzy0ihWYGaAdN6ANoCEdAr5+1LHuJDXV9lChoBkdAmPa8m0E5hmgHTegDaAhHQK+o4orFwUB1fZQoaAZHQJuoDPC2tuFoB03oA2gIR0CvqXYdQwbmdX2UKGgGR0Ccm1Oz6ab4aAdN6ANoCEdAr6svFtKqXHV9lChoBkdAevB4jKPn0WgHTegDaAhHQK+rnX5FgD11fZQoaAZHQJsDwHY6GQFoB03oA2gIR0CvtLWYnfEXdX2UKGgGR0CVJWWyTpxFaAdN6ANoCEdAr7WNh3JPqXV9lChoBkdAmaknmig00mgHTegDaAhHQK+4Kr/bTMJ1fZQoaAZHQJvuYM7U5MloB03oA2gIR0CvuNBBzFMqdX2UKGgGR0CWbePepGWlaAdN6ANoCEdAr8VCVQhwEXV9lChoBkdAnGwslTm4iGgHTegDaAhHQK/F12TxG2F1fZQoaAZHQJj4mD5CWu5oB03oA2gIR0Cvx6H+ZPVNdX2UKGgGR0B1Uycy31BdaAdN6ANoCEdAr8ga7K7qZHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52b46fc9e96f3d6a5b0a009189cad0c486ef94b585642fa80349d9af9b45ebc5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cdfac082ab8bd5b54ddffab1d0b12077e15bb0b32d389ff87fb24ae18fd2a4a
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31e9714ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31e9714f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31e9718040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31e97180d0>", "_build": "<function ActorCriticPolicy._build at 0x7f31e9718160>", "forward": "<function ActorCriticPolicy.forward at 0x7f31e97181f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31e9718280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31e9718310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f31e97183a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31e9718430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31e97184c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31e9718550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f31e97194c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678985504570395773, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIF4RD9rXga/jCvnPpEJBEAQYjk/USJtP0ZPvz9yg6W/o7bRPlixY78DVUu/xMEzP6cGuj9jzq09Wac8PmepDkADS6o/U+0lvw8SSz9iBlu/2EL+vo0oR8BC9yM/xMfCvkY6gr+HtCA/WmPpv0h4hT9VZig/Im3Dv69/sL5UIJs/x3i1P+uAsr+Ur8g+wuF1v5rQQj8z9U29g15tv0FecT29SHE/T+DZP1KG0T4/RF5AcRemPzum0z8ApUQ/33Ovv+PV+TyPsce/JVW8P33lqj5GOoK/h7QgP1pj6b82gnW/lYoaPw7qfL8JQ1M+L3mZP5U0iz7+aBU/3qjoPmbEl79hR6I+Il8ev/OKIr6fx64/JaQlP2/Fbr5j6B4/ztiGPLc1iz+qJym/WaMYvNSqgD6ReGy/Cx0hP5zoKT8UwZS/RjqCv73my79aY+m/SHiFP+5Rmj9DYRE/PGm+Po97QT9ODIK/KlKwP11jgT/lKoO/PIYeP4jJh79UH70/W5uivjXLiL+AtqQ/wov8v5TWBT4QbFm/ZvhqPgqAYT/fc3s9TgCnvpkRwD/DMzm/53KHP0Y6gr+HtCA/vWYMPzaCdb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFtgm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIwc/PQAAAAAcLPa/AAAAAPq8x70AAAAAAb/bPwAAAACz0uQ9AAAAALSm4T8AAAAAqT/avAAAAAArpfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCaJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCgUbr0AAAAAQYfcvwAAAADPhl49AAAAAO7G9j8AAAAAv54LvAAAAABapN0/AAAAAL73kr0AAAAAggn7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjcqbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBupg0+AAAAAPx7278AAAAA2HXzvQAAAAAfbOI/AAAAAGaBTj0AAAAA3VD2PwAAAADCA7w8AAAAAK2J+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjoDw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeSdvAAAAADJP/a/AAAAAPbDH7oAAAAArlL3PwAAAAB53PK9AAAAAPvE7T8AAAAAEXQRvgAAAABjGvq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJkdqqlxffKMAWyUTegDjAF0lEdArnwmq1gH/3V9lChoBkdAkLVD9KmKqGgHTegDaAhHQK58t9JBgNR1fZQoaAZHQJgBhwiqyW1oB03oA2gIR0CufmCqZML4dX2UKGgGR0CTIQaCtihGaAdN6ANoCEdArn7OwiaAnXV9lChoBkdAmX+RbnoxH2gHTegDaAhHQK6I0YnfEXN1fZQoaAZHQGvlLiMo+fRoB03oA2gIR0Cuia2pyZKGdX2UKGgGR0CV2wKBd2PlaAdN6ANoCEdAroxFKIznBHV9lChoBkdAlA4HKr7wa2gHTegDaAhHQK6M8A6Mir11fZQoaAZHQJWrR4dIXj5oB03oA2gIR0CumKL26ClKdX2UKGgGR0CIYCN96TnraAdN6ANoCEdArpk2PJaJRHV9lChoBkdAk/Mwxi5NGmgHTegDaAhHQK6a6qlP8AJ1fZQoaAZHQJTUdVWCEpRoB03oA2gIR0Cum157XxvvdX2UKGgGR0Cabs5FPSDzaAdN6ANoCEdArqQ6GcnVonV9lChoBkdAjMRDH4oJA2gHTegDaAhHQK6kyBNEgGN1fZQoaAZHQJTo5d9lVcVoB03oA2gIR0CupnhMajvedX2UKGgGR0CY/gcPvrnlaAdN6ANoCEdArqbl2LYPG3V9lChoBkdAmuRhZEDyOWgHTegDaAhHQK60biWE9Md1fZQoaAZHQJjv/YK6WgRoB03oA2gIR0CutUGUfPondX2UKGgGR0CcadkleF+NaAdN6ANoCEdArrcL8gpz93V9lChoBkdAly7UORT0hGgHTegDaAhHQK63f+y7f511fZQoaAZHQJrpsarFOwhoB03oA2gIR0CuwEqf4AS4dX2UKGgGR0Cb88s7uDzzaAdN6ANoCEdArsDU21lXinV9lChoBkdAm/UVhb4agmgHTegDaAhHQK7ChSkTHsF1fZQoaAZHQJmoR6dDpkhoB03oA2gIR0CuwvAa3qiXdX2UKGgGR0Cc55LRa5f/aAdN6ANoCEdArszaFAVwgnV9lChoBkdAm5v8zyjHn2gHTegDaAhHQK7Nqvllsgx1fZQoaAZHQJoGM163RXxoB03oA2gIR0Cu0HRzaK1pdX2UKGgGR0CfuTYTCcgAaAdN6ANoCEdArtE5jawljXV9lChoBkdAnMkzhHbypmgHTegDaAhHQK7cWnivPkd1fZQoaAZHQJmGKVu76HloB03oA2gIR0Cu3ObLt/nXdX2UKGgGR0Cd34yC4BmxaAdN6ANoCEdArt6ha7mMfnV9lChoBkdAnPAClFc6eWgHTegDaAhHQK7fEL+glGB1fZQoaAZHQJ11uRbKRuFoB03oA2gIR0Cu5/ArYoRadX2UKGgGR0CWIxlWfbsXaAdN6ANoCEdAruh1BlcyFnV9lChoBkdAnO0a4QSSNmgHTegDaAhHQK7qJkupS751fZQoaAZHQJxFw98qnWJoB03oA2gIR0Cu6pOMl1KXdX2UKGgGR0CbnHDDTBqLaAdN6ANoCEdArvg+lyimEXV9lChoBkdAlfrfv4M4LmgHTegDaAhHQK742C6H0sh1fZQoaAZHQJ4+vDTBqKxoB03oA2gIR0Cu+pB86V+rdX2UKGgGR0CVTYhf0EowaAdN6ANoCEdArvr7q2SdOXV9lChoBkdAn3wRNdqtYGgHTegDaAhHQK8D6Uu+RHR1fZQoaAZHQJuHcexOclRoB03oA2gIR0CvBH3QdCE6dX2UKGgGR0CVMmXjENvwaAdN6ANoCEdArwY5Qgs9S3V9lChoBkdAnxU2Pkq+amgHTegDaAhHQK8GruUliSd1fZQoaAZHQIKN9wDNhVloB03oA2gIR0CvEbUd7v5QdX2UKGgGR0CYTrGXokiVaAdN6ANoCEdArxKEV58jRnV9lChoBkdAmPyXPVurImgHTegDaAhHQK8VWcMmWt51fZQoaAZHQJt/ehRIjGFoB03oA2gIR0CvFgtVrAP/dX2UKGgGR0CXQTnctXgcaAdN6ANoCEdAryCPsiSq2nV9lChoBkdAntGF7+kxh2gHTegDaAhHQK8hIRjjJdV1fZQoaAZHQJxxacBltj1oB03oA2gIR0CvIvHJkoWpdX2UKGgGR0CfEjA93bEhaAdN6ANoCEdAryNmGGmDUXV9lChoBkdAnwN80HhS+GgHTegDaAhHQK8sNUfgaWJ1fZQoaAZHQJTCC72+PBBoB03oA2gIR0CvLMf/NqxkdX2UKGgGR0CcgX6Eal1saAdN6ANoCEdAry6iJCSid3V9lChoBkdAn60SRbKRuGgHTegDaAhHQK8vTqRlpXZ1fZQoaAZHQJLSP1Gsmv5oB03oA2gIR0CvPI194NZvdX2UKGgGR0CYNg6j3225aAdN6ANoCEdArz0W+PBBRnV9lChoBkdAlrt05U96kmgHTegDaAhHQK8+xDye7MB1fZQoaAZHQJAnuzJIUahoB03oA2gIR0CvPy+7UXpGdX2UKGgGR0CZytHvMKTjaAdN6ANoCEdAr0f3gFX7tXV9lChoBkdAny2l0HQhOmgHTegDaAhHQK9IjUqhDgJ1fZQoaAZHQJ5Yej9GZu1oB03oA2gIR0CvSntpdrwfdX2UKGgGR0B1VeoS+QEIaAdN6ANoCEdAr0rpC6YmcHV9lChoBkdAmEaC7f51vGgHTegDaAhHQK9V+NyYG+t1fZQoaAZHQJvkm8yvcJtoB03oA2gIR0CvVtzt9hJAdX2UKGgGR0Cd110cfeUIaAdN6ANoCEdAr1mf6yjYZnV9lChoBkdAkMjQUYbbUWgHTegDaAhHQK9aS9QoCuF1fZQoaAZHQJyOsHZ9NN9oB03oA2gIR0CvZAPNeMQ3dX2UKGgGR0CZFFOAiFCcaAdN6ANoCEdAr2SN0JWvKXV9lChoBkdAm9LJl8PWhGgHTegDaAhHQK9mQWQfZEl1fZQoaAZHQJxVe09hZyNoB03oA2gIR0CvZrAgxJumdX2UKGgGR0B+FP0Gu9vkaAdN6ANoCEdAr2/M+3YthHV9lChoBkdAmLh8tTUAk2gHTegDaAhHQK9wV2aDwph1fZQoaAZHQIYyZDArQPZoB03oA2gIR0CvcrkMTewcdX2UKGgGR0CTK20voNd7aAdN6ANoCEdAr3NfYnOSn3V9lChoBkdAfWCDgqEvkGgHTegDaAhHQK+AXWOIZZV1fZQoaAZHQJk/Ee/5+H9oB03oA2gIR0CvgO6hg3LndX2UKGgGR0COllPUKArhaAdN6ANoCEdAr4Kyt9x6wHV9lChoBkdAgSkVstTUAmgHTegDaAhHQK+DHx//ech1fZQoaAZHQJJHJIXj2jBoB03oA2gIR0CvjE/G+9J0dX2UKGgGR8BYPSP2f02+aAdN6ANoCEdAr4zbuF6Av3V9lChoBkdAlfNCtzS1E2gHTegDaAhHQK+OoTJyQxN1fZQoaAZHQIQLqqfe1rtoB03oA2gIR0Cvjw5gXuVpdX2UKGgGR0Ccsd6CUX54aAdN6ANoCEdAr5s6ZYxL03V9lChoBkdAg/w+WOZLI2gHTegDaAhHQK+cJ6CUX551fZQoaAZHQIAWifDk2gpoB03oA2gIR0CvnwH+hoM8dX2UKGgGR0CZzy0ihWYGaAdN6ANoCEdAr5+1LHuJDXV9lChoBkdAmPa8m0E5hmgHTegDaAhHQK+o4orFwUB1fZQoaAZHQJuoDPC2tuFoB03oA2gIR0CvqXYdQwbmdX2UKGgGR0Ccm1Oz6ab4aAdN6ANoCEdAr6svFtKqXHV9lChoBkdAevB4jKPn0WgHTegDaAhHQK+rnX5FgD11fZQoaAZHQJsDwHY6GQFoB03oA2gIR0CvtLWYnfEXdX2UKGgGR0CVJWWyTpxFaAdN6ANoCEdAr7WNh3JPqXV9lChoBkdAmaknmig00mgHTegDaAhHQK+4Kr/bTMJ1fZQoaAZHQJvuYM7U5MloB03oA2gIR0CvuNBBzFMqdX2UKGgGR0CWbePepGWlaAdN6ANoCEdAr8VCVQhwEXV9lChoBkdAnGwslTm4iGgHTegDaAhHQK/F12TxG2F1fZQoaAZHQJj4mD5CWu5oB03oA2gIR0Cvx6H+ZPVNdX2UKGgGR0B1Uycy31BdaAdN6ANoCEdAr8ga7K7qZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1070bc5939e8a186b79dccc8e81adfebda22eb5780217e3c1d32fff3b4c53e9
3
+ size 1156468
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1613.836872798903, "std_reward": 308.02760418490533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-16T17:55:27.319101"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f2c4f88ac63a4cbf5c9cacdd691c518d1d074dc7ef7e31f2fdad9c00cc7d5fc
3
+ size 2136