Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1613.84 +/- 308.03
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7992c1408ba0aee2a4e9da71e952a6022ce65ac6975ecc407da8c6aa65af1742
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f31e9714ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31e9714f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31e9718040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31e97180d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f31e9718160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f31e97181f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31e9718280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31e9718310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f31e97183a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31e9718430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31e97184c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31e9718550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f31e97194c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678985504570395773,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIF4RD9rXga/jCvnPpEJBEAQYjk/USJtP0ZPvz9yg6W/o7bRPlixY78DVUu/xMEzP6cGuj9jzq09Wac8PmepDkADS6o/U+0lvw8SSz9iBlu/2EL+vo0oR8BC9yM/xMfCvkY6gr+HtCA/WmPpv0h4hT9VZig/Im3Dv69/sL5UIJs/x3i1P+uAsr+Ur8g+wuF1v5rQQj8z9U29g15tv0FecT29SHE/T+DZP1KG0T4/RF5AcRemPzum0z8ApUQ/33Ovv+PV+TyPsce/JVW8P33lqj5GOoK/h7QgP1pj6b82gnW/lYoaPw7qfL8JQ1M+L3mZP5U0iz7+aBU/3qjoPmbEl79hR6I+Il8ev/OKIr6fx64/JaQlP2/Fbr5j6B4/ztiGPLc1iz+qJym/WaMYvNSqgD6ReGy/Cx0hP5zoKT8UwZS/RjqCv73my79aY+m/SHiFP+5Rmj9DYRE/PGm+Po97QT9ODIK/KlKwP11jgT/lKoO/PIYeP4jJh79UH70/W5uivjXLiL+AtqQ/wov8v5TWBT4QbFm/ZvhqPgqAYT/fc3s9TgCnvpkRwD/DMzm/53KHP0Y6gr+HtCA/vWYMPzaCdb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFtgm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIwc/PQAAAAAcLPa/AAAAAPq8x70AAAAAAb/bPwAAAACz0uQ9AAAAALSm4T8AAAAAqT/avAAAAAArpfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCaJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCgUbr0AAAAAQYfcvwAAAADPhl49AAAAAO7G9j8AAAAAv54LvAAAAABapN0/AAAAAL73kr0AAAAAggn7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjcqbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBupg0+AAAAAPx7278AAAAA2HXzvQAAAAAfbOI/AAAAAGaBTj0AAAAA3VD2PwAAAADCA7w8AAAAAK2J+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjoDw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeSdvAAAAADJP/a/AAAAAPbDH7oAAAAArlL3PwAAAAB53PK9AAAAAPvE7T8AAAAAEXQRvgAAAABjGvq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJkdqqlxffKMAWyUTegDjAF0lEdArnwmq1gH/3V9lChoBkdAkLVD9KmKqGgHTegDaAhHQK58t9JBgNR1fZQoaAZHQJgBhwiqyW1oB03oA2gIR0CufmCqZML4dX2UKGgGR0CTIQaCtihGaAdN6ANoCEdArn7OwiaAnXV9lChoBkdAmX+RbnoxH2gHTegDaAhHQK6I0YnfEXN1fZQoaAZHQGvlLiMo+fRoB03oA2gIR0Cuia2pyZKGdX2UKGgGR0CV2wKBd2PlaAdN6ANoCEdAroxFKIznBHV9lChoBkdAlA4HKr7wa2gHTegDaAhHQK6M8A6Mir11fZQoaAZHQJWrR4dIXj5oB03oA2gIR0CumKL26ClKdX2UKGgGR0CIYCN96TnraAdN6ANoCEdArpk2PJaJRHV9lChoBkdAk/Mwxi5NGmgHTegDaAhHQK6a6qlP8AJ1fZQoaAZHQJTUdVWCEpRoB03oA2gIR0Cum157XxvvdX2UKGgGR0Cabs5FPSDzaAdN6ANoCEdArqQ6GcnVonV9lChoBkdAjMRDH4oJA2gHTegDaAhHQK6kyBNEgGN1fZQoaAZHQJTo5d9lVcVoB03oA2gIR0CupnhMajvedX2UKGgGR0CY/gcPvrnlaAdN6ANoCEdArqbl2LYPG3V9lChoBkdAmuRhZEDyOWgHTegDaAhHQK60biWE9Md1fZQoaAZHQJjv/YK6WgRoB03oA2gIR0CutUGUfPondX2UKGgGR0CcadkleF+NaAdN6ANoCEdArrcL8gpz93V9lChoBkdAly7UORT0hGgHTegDaAhHQK63f+y7f511fZQoaAZHQJrpsarFOwhoB03oA2gIR0CuwEqf4AS4dX2UKGgGR0Cb88s7uDzzaAdN6ANoCEdArsDU21lXinV9lChoBkdAm/UVhb4agmgHTegDaAhHQK7ChSkTHsF1fZQoaAZHQJmoR6dDpkhoB03oA2gIR0CuwvAa3qiXdX2UKGgGR0Cc55LRa5f/aAdN6ANoCEdArszaFAVwgnV9lChoBkdAm5v8zyjHn2gHTegDaAhHQK7Nqvllsgx1fZQoaAZHQJoGM163RXxoB03oA2gIR0Cu0HRzaK1pdX2UKGgGR0CfuTYTCcgAaAdN6ANoCEdArtE5jawljXV9lChoBkdAnMkzhHbypmgHTegDaAhHQK7cWnivPkd1fZQoaAZHQJmGKVu76HloB03oA2gIR0Cu3ObLt/nXdX2UKGgGR0Cd34yC4BmxaAdN6ANoCEdArt6ha7mMfnV9lChoBkdAnPAClFc6eWgHTegDaAhHQK7fEL+glGB1fZQoaAZHQJ11uRbKRuFoB03oA2gIR0Cu5/ArYoRadX2UKGgGR0CWIxlWfbsXaAdN6ANoCEdAruh1BlcyFnV9lChoBkdAnO0a4QSSNmgHTegDaAhHQK7qJkupS751fZQoaAZHQJxFw98qnWJoB03oA2gIR0Cu6pOMl1KXdX2UKGgGR0CbnHDDTBqLaAdN6ANoCEdArvg+lyimEXV9lChoBkdAlfrfv4M4LmgHTegDaAhHQK742C6H0sh1fZQoaAZHQJ4+vDTBqKxoB03oA2gIR0Cu+pB86V+rdX2UKGgGR0CVTYhf0EowaAdN6ANoCEdArvr7q2SdOXV9lChoBkdAn3wRNdqtYGgHTegDaAhHQK8D6Uu+RHR1fZQoaAZHQJuHcexOclRoB03oA2gIR0CvBH3QdCE6dX2UKGgGR0CVMmXjENvwaAdN6ANoCEdArwY5Qgs9S3V9lChoBkdAnxU2Pkq+amgHTegDaAhHQK8GruUliSd1fZQoaAZHQIKN9wDNhVloB03oA2gIR0CvEbUd7v5QdX2UKGgGR0CYTrGXokiVaAdN6ANoCEdArxKEV58jRnV9lChoBkdAmPyXPVurImgHTegDaAhHQK8VWcMmWt51fZQoaAZHQJt/ehRIjGFoB03oA2gIR0CvFgtVrAP/dX2UKGgGR0CXQTnctXgcaAdN6ANoCEdAryCPsiSq2nV9lChoBkdAntGF7+kxh2gHTegDaAhHQK8hIRjjJdV1fZQoaAZHQJxxacBltj1oB03oA2gIR0CvIvHJkoWpdX2UKGgGR0CfEjA93bEhaAdN6ANoCEdAryNmGGmDUXV9lChoBkdAnwN80HhS+GgHTegDaAhHQK8sNUfgaWJ1fZQoaAZHQJTCC72+PBBoB03oA2gIR0CvLMf/NqxkdX2UKGgGR0CcgX6Eal1saAdN6ANoCEdAry6iJCSid3V9lChoBkdAn60SRbKRuGgHTegDaAhHQK8vTqRlpXZ1fZQoaAZHQJLSP1Gsmv5oB03oA2gIR0CvPI194NZvdX2UKGgGR0CYNg6j3225aAdN6ANoCEdArz0W+PBBRnV9lChoBkdAlrt05U96kmgHTegDaAhHQK8+xDye7MB1fZQoaAZHQJAnuzJIUahoB03oA2gIR0CvPy+7UXpGdX2UKGgGR0CZytHvMKTjaAdN6ANoCEdAr0f3gFX7tXV9lChoBkdAny2l0HQhOmgHTegDaAhHQK9IjUqhDgJ1fZQoaAZHQJ5Yej9GZu1oB03oA2gIR0CvSntpdrwfdX2UKGgGR0B1VeoS+QEIaAdN6ANoCEdAr0rpC6YmcHV9lChoBkdAmEaC7f51vGgHTegDaAhHQK9V+NyYG+t1fZQoaAZHQJvkm8yvcJtoB03oA2gIR0CvVtzt9hJAdX2UKGgGR0Cd110cfeUIaAdN6ANoCEdAr1mf6yjYZnV9lChoBkdAkMjQUYbbUWgHTegDaAhHQK9aS9QoCuF1fZQoaAZHQJyOsHZ9NN9oB03oA2gIR0CvZAPNeMQ3dX2UKGgGR0CZFFOAiFCcaAdN6ANoCEdAr2SN0JWvKXV9lChoBkdAm9LJl8PWhGgHTegDaAhHQK9mQWQfZEl1fZQoaAZHQJxVe09hZyNoB03oA2gIR0CvZrAgxJumdX2UKGgGR0B+FP0Gu9vkaAdN6ANoCEdAr2/M+3YthHV9lChoBkdAmLh8tTUAk2gHTegDaAhHQK9wV2aDwph1fZQoaAZHQIYyZDArQPZoB03oA2gIR0CvcrkMTewcdX2UKGgGR0CTK20voNd7aAdN6ANoCEdAr3NfYnOSn3V9lChoBkdAfWCDgqEvkGgHTegDaAhHQK+AXWOIZZV1fZQoaAZHQJk/Ee/5+H9oB03oA2gIR0CvgO6hg3LndX2UKGgGR0COllPUKArhaAdN6ANoCEdAr4Kyt9x6wHV9lChoBkdAgSkVstTUAmgHTegDaAhHQK+DHx//ech1fZQoaAZHQJJHJIXj2jBoB03oA2gIR0CvjE/G+9J0dX2UKGgGR8BYPSP2f02+aAdN6ANoCEdAr4zbuF6Av3V9lChoBkdAlfNCtzS1E2gHTegDaAhHQK+OoTJyQxN1fZQoaAZHQIQLqqfe1rtoB03oA2gIR0Cvjw5gXuVpdX2UKGgGR0Ccsd6CUX54aAdN6ANoCEdAr5s6ZYxL03V9lChoBkdAg/w+WOZLI2gHTegDaAhHQK+cJ6CUX551fZQoaAZHQIAWifDk2gpoB03oA2gIR0CvnwH+hoM8dX2UKGgGR0CZzy0ihWYGaAdN6ANoCEdAr5+1LHuJDXV9lChoBkdAmPa8m0E5hmgHTegDaAhHQK+o4orFwUB1fZQoaAZHQJuoDPC2tuFoB03oA2gIR0CvqXYdQwbmdX2UKGgGR0Ccm1Oz6ab4aAdN6ANoCEdAr6svFtKqXHV9lChoBkdAevB4jKPn0WgHTegDaAhHQK+rnX5FgD11fZQoaAZHQJsDwHY6GQFoB03oA2gIR0CvtLWYnfEXdX2UKGgGR0CVJWWyTpxFaAdN6ANoCEdAr7WNh3JPqXV9lChoBkdAmaknmig00mgHTegDaAhHQK+4Kr/bTMJ1fZQoaAZHQJvuYM7U5MloB03oA2gIR0CvuNBBzFMqdX2UKGgGR0CWbePepGWlaAdN6ANoCEdAr8VCVQhwEXV9lChoBkdAnGwslTm4iGgHTegDaAhHQK/F12TxG2F1fZQoaAZHQJj4mD5CWu5oB03oA2gIR0Cvx6H+ZPVNdX2UKGgGR0B1Uycy31BdaAdN6ANoCEdAr8ga7K7qZHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52b46fc9e96f3d6a5b0a009189cad0c486ef94b585642fa80349d9af9b45ebc5
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cdfac082ab8bd5b54ddffab1d0b12077e15bb0b32d389ff87fb24ae18fd2a4a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31e9714ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31e9714f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31e9718040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31e97180d0>", "_build": "<function ActorCriticPolicy._build at 0x7f31e9718160>", "forward": "<function ActorCriticPolicy.forward at 0x7f31e97181f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31e9718280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31e9718310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f31e97183a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31e9718430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31e97184c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31e9718550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f31e97194c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678985504570395773, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIF4RD9rXga/jCvnPpEJBEAQYjk/USJtP0ZPvz9yg6W/o7bRPlixY78DVUu/xMEzP6cGuj9jzq09Wac8PmepDkADS6o/U+0lvw8SSz9iBlu/2EL+vo0oR8BC9yM/xMfCvkY6gr+HtCA/WmPpv0h4hT9VZig/Im3Dv69/sL5UIJs/x3i1P+uAsr+Ur8g+wuF1v5rQQj8z9U29g15tv0FecT29SHE/T+DZP1KG0T4/RF5AcRemPzum0z8ApUQ/33Ovv+PV+TyPsce/JVW8P33lqj5GOoK/h7QgP1pj6b82gnW/lYoaPw7qfL8JQ1M+L3mZP5U0iz7+aBU/3qjoPmbEl79hR6I+Il8ev/OKIr6fx64/JaQlP2/Fbr5j6B4/ztiGPLc1iz+qJym/WaMYvNSqgD6ReGy/Cx0hP5zoKT8UwZS/RjqCv73my79aY+m/SHiFP+5Rmj9DYRE/PGm+Po97QT9ODIK/KlKwP11jgT/lKoO/PIYeP4jJh79UH70/W5uivjXLiL+AtqQ/wov8v5TWBT4QbFm/ZvhqPgqAYT/fc3s9TgCnvpkRwD/DMzm/53KHP0Y6gr+HtCA/vWYMPzaCdb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFtgm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIwc/PQAAAAAcLPa/AAAAAPq8x70AAAAAAb/bPwAAAACz0uQ9AAAAALSm4T8AAAAAqT/avAAAAAArpfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCaJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCgUbr0AAAAAQYfcvwAAAADPhl49AAAAAO7G9j8AAAAAv54LvAAAAABapN0/AAAAAL73kr0AAAAAggn7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjcqbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBupg0+AAAAAPx7278AAAAA2HXzvQAAAAAfbOI/AAAAAGaBTj0AAAAA3VD2PwAAAADCA7w8AAAAAK2J+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjoDw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeSdvAAAAADJP/a/AAAAAPbDH7oAAAAArlL3PwAAAAB53PK9AAAAAPvE7T8AAAAAEXQRvgAAAABjGvq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJkdqqlxffKMAWyUTegDjAF0lEdArnwmq1gH/3V9lChoBkdAkLVD9KmKqGgHTegDaAhHQK58t9JBgNR1fZQoaAZHQJgBhwiqyW1oB03oA2gIR0CufmCqZML4dX2UKGgGR0CTIQaCtihGaAdN6ANoCEdArn7OwiaAnXV9lChoBkdAmX+RbnoxH2gHTegDaAhHQK6I0YnfEXN1fZQoaAZHQGvlLiMo+fRoB03oA2gIR0Cuia2pyZKGdX2UKGgGR0CV2wKBd2PlaAdN6ANoCEdAroxFKIznBHV9lChoBkdAlA4HKr7wa2gHTegDaAhHQK6M8A6Mir11fZQoaAZHQJWrR4dIXj5oB03oA2gIR0CumKL26ClKdX2UKGgGR0CIYCN96TnraAdN6ANoCEdArpk2PJaJRHV9lChoBkdAk/Mwxi5NGmgHTegDaAhHQK6a6qlP8AJ1fZQoaAZHQJTUdVWCEpRoB03oA2gIR0Cum157XxvvdX2UKGgGR0Cabs5FPSDzaAdN6ANoCEdArqQ6GcnVonV9lChoBkdAjMRDH4oJA2gHTegDaAhHQK6kyBNEgGN1fZQoaAZHQJTo5d9lVcVoB03oA2gIR0CupnhMajvedX2UKGgGR0CY/gcPvrnlaAdN6ANoCEdArqbl2LYPG3V9lChoBkdAmuRhZEDyOWgHTegDaAhHQK60biWE9Md1fZQoaAZHQJjv/YK6WgRoB03oA2gIR0CutUGUfPondX2UKGgGR0CcadkleF+NaAdN6ANoCEdArrcL8gpz93V9lChoBkdAly7UORT0hGgHTegDaAhHQK63f+y7f511fZQoaAZHQJrpsarFOwhoB03oA2gIR0CuwEqf4AS4dX2UKGgGR0Cb88s7uDzzaAdN6ANoCEdArsDU21lXinV9lChoBkdAm/UVhb4agmgHTegDaAhHQK7ChSkTHsF1fZQoaAZHQJmoR6dDpkhoB03oA2gIR0CuwvAa3qiXdX2UKGgGR0Cc55LRa5f/aAdN6ANoCEdArszaFAVwgnV9lChoBkdAm5v8zyjHn2gHTegDaAhHQK7Nqvllsgx1fZQoaAZHQJoGM163RXxoB03oA2gIR0Cu0HRzaK1pdX2UKGgGR0CfuTYTCcgAaAdN6ANoCEdArtE5jawljXV9lChoBkdAnMkzhHbypmgHTegDaAhHQK7cWnivPkd1fZQoaAZHQJmGKVu76HloB03oA2gIR0Cu3ObLt/nXdX2UKGgGR0Cd34yC4BmxaAdN6ANoCEdArt6ha7mMfnV9lChoBkdAnPAClFc6eWgHTegDaAhHQK7fEL+glGB1fZQoaAZHQJ11uRbKRuFoB03oA2gIR0Cu5/ArYoRadX2UKGgGR0CWIxlWfbsXaAdN6ANoCEdAruh1BlcyFnV9lChoBkdAnO0a4QSSNmgHTegDaAhHQK7qJkupS751fZQoaAZHQJxFw98qnWJoB03oA2gIR0Cu6pOMl1KXdX2UKGgGR0CbnHDDTBqLaAdN6ANoCEdArvg+lyimEXV9lChoBkdAlfrfv4M4LmgHTegDaAhHQK742C6H0sh1fZQoaAZHQJ4+vDTBqKxoB03oA2gIR0Cu+pB86V+rdX2UKGgGR0CVTYhf0EowaAdN6ANoCEdArvr7q2SdOXV9lChoBkdAn3wRNdqtYGgHTegDaAhHQK8D6Uu+RHR1fZQoaAZHQJuHcexOclRoB03oA2gIR0CvBH3QdCE6dX2UKGgGR0CVMmXjENvwaAdN6ANoCEdArwY5Qgs9S3V9lChoBkdAnxU2Pkq+amgHTegDaAhHQK8GruUliSd1fZQoaAZHQIKN9wDNhVloB03oA2gIR0CvEbUd7v5QdX2UKGgGR0CYTrGXokiVaAdN6ANoCEdArxKEV58jRnV9lChoBkdAmPyXPVurImgHTegDaAhHQK8VWcMmWt51fZQoaAZHQJt/ehRIjGFoB03oA2gIR0CvFgtVrAP/dX2UKGgGR0CXQTnctXgcaAdN6ANoCEdAryCPsiSq2nV9lChoBkdAntGF7+kxh2gHTegDaAhHQK8hIRjjJdV1fZQoaAZHQJxxacBltj1oB03oA2gIR0CvIvHJkoWpdX2UKGgGR0CfEjA93bEhaAdN6ANoCEdAryNmGGmDUXV9lChoBkdAnwN80HhS+GgHTegDaAhHQK8sNUfgaWJ1fZQoaAZHQJTCC72+PBBoB03oA2gIR0CvLMf/NqxkdX2UKGgGR0CcgX6Eal1saAdN6ANoCEdAry6iJCSid3V9lChoBkdAn60SRbKRuGgHTegDaAhHQK8vTqRlpXZ1fZQoaAZHQJLSP1Gsmv5oB03oA2gIR0CvPI194NZvdX2UKGgGR0CYNg6j3225aAdN6ANoCEdArz0W+PBBRnV9lChoBkdAlrt05U96kmgHTegDaAhHQK8+xDye7MB1fZQoaAZHQJAnuzJIUahoB03oA2gIR0CvPy+7UXpGdX2UKGgGR0CZytHvMKTjaAdN6ANoCEdAr0f3gFX7tXV9lChoBkdAny2l0HQhOmgHTegDaAhHQK9IjUqhDgJ1fZQoaAZHQJ5Yej9GZu1oB03oA2gIR0CvSntpdrwfdX2UKGgGR0B1VeoS+QEIaAdN6ANoCEdAr0rpC6YmcHV9lChoBkdAmEaC7f51vGgHTegDaAhHQK9V+NyYG+t1fZQoaAZHQJvkm8yvcJtoB03oA2gIR0CvVtzt9hJAdX2UKGgGR0Cd110cfeUIaAdN6ANoCEdAr1mf6yjYZnV9lChoBkdAkMjQUYbbUWgHTegDaAhHQK9aS9QoCuF1fZQoaAZHQJyOsHZ9NN9oB03oA2gIR0CvZAPNeMQ3dX2UKGgGR0CZFFOAiFCcaAdN6ANoCEdAr2SN0JWvKXV9lChoBkdAm9LJl8PWhGgHTegDaAhHQK9mQWQfZEl1fZQoaAZHQJxVe09hZyNoB03oA2gIR0CvZrAgxJumdX2UKGgGR0B+FP0Gu9vkaAdN6ANoCEdAr2/M+3YthHV9lChoBkdAmLh8tTUAk2gHTegDaAhHQK9wV2aDwph1fZQoaAZHQIYyZDArQPZoB03oA2gIR0CvcrkMTewcdX2UKGgGR0CTK20voNd7aAdN6ANoCEdAr3NfYnOSn3V9lChoBkdAfWCDgqEvkGgHTegDaAhHQK+AXWOIZZV1fZQoaAZHQJk/Ee/5+H9oB03oA2gIR0CvgO6hg3LndX2UKGgGR0COllPUKArhaAdN6ANoCEdAr4Kyt9x6wHV9lChoBkdAgSkVstTUAmgHTegDaAhHQK+DHx//ech1fZQoaAZHQJJHJIXj2jBoB03oA2gIR0CvjE/G+9J0dX2UKGgGR8BYPSP2f02+aAdN6ANoCEdAr4zbuF6Av3V9lChoBkdAlfNCtzS1E2gHTegDaAhHQK+OoTJyQxN1fZQoaAZHQIQLqqfe1rtoB03oA2gIR0Cvjw5gXuVpdX2UKGgGR0Ccsd6CUX54aAdN6ANoCEdAr5s6ZYxL03V9lChoBkdAg/w+WOZLI2gHTegDaAhHQK+cJ6CUX551fZQoaAZHQIAWifDk2gpoB03oA2gIR0CvnwH+hoM8dX2UKGgGR0CZzy0ihWYGaAdN6ANoCEdAr5+1LHuJDXV9lChoBkdAmPa8m0E5hmgHTegDaAhHQK+o4orFwUB1fZQoaAZHQJuoDPC2tuFoB03oA2gIR0CvqXYdQwbmdX2UKGgGR0Ccm1Oz6ab4aAdN6ANoCEdAr6svFtKqXHV9lChoBkdAevB4jKPn0WgHTegDaAhHQK+rnX5FgD11fZQoaAZHQJsDwHY6GQFoB03oA2gIR0CvtLWYnfEXdX2UKGgGR0CVJWWyTpxFaAdN6ANoCEdAr7WNh3JPqXV9lChoBkdAmaknmig00mgHTegDaAhHQK+4Kr/bTMJ1fZQoaAZHQJvuYM7U5MloB03oA2gIR0CvuNBBzFMqdX2UKGgGR0CWbePepGWlaAdN6ANoCEdAr8VCVQhwEXV9lChoBkdAnGwslTm4iGgHTegDaAhHQK/F12TxG2F1fZQoaAZHQJj4mD5CWu5oB03oA2gIR0Cvx6H+ZPVNdX2UKGgGR0B1Uycy31BdaAdN6ANoCEdAr8ga7K7qZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1070bc5939e8a186b79dccc8e81adfebda22eb5780217e3c1d32fff3b4c53e9
|
3 |
+
size 1156468
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1613.836872798903, "std_reward": 308.02760418490533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-16T17:55:27.319101"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f2c4f88ac63a4cbf5c9cacdd691c518d1d074dc7ef7e31f2fdad9c00cc7d5fc
|
3 |
+
size 2136
|