prithivMLmods
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -25,3 +25,42 @@ With its robust natural language processing capabilities, **Deepthink-Reasoning-
|
|
25 |
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
|
26 |
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
|
26 |
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
|
27 |
|
28 |
+
# **Demo Start**
|
29 |
+
|
30 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
+
|
35 |
+
model_name = "prithivMLmods/Deepthink-Reasoning-7B"
|
36 |
+
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
torch_dtype="auto",
|
40 |
+
device_map="auto"
|
41 |
+
)
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
|
44 |
+
prompt = "Give me a short introduction to large language model."
|
45 |
+
messages = [
|
46 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
47 |
+
{"role": "user", "content": prompt}
|
48 |
+
]
|
49 |
+
text = tokenizer.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True
|
53 |
+
)
|
54 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
55 |
+
|
56 |
+
generated_ids = model.generate(
|
57 |
+
**model_inputs,
|
58 |
+
max_new_tokens=512
|
59 |
+
)
|
60 |
+
generated_ids = [
|
61 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
62 |
+
]
|
63 |
+
|
64 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
65 |
+
```
|
66 |
+
|