prince-canuma commited on
Commit
764568d
·
verified ·
1 Parent(s): de31558

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ truthfulQA.png filter=lfs diff=lfs merge=lfs -text
37
+ Damysus-2.7B-Chat-f16.gguf filter=lfs diff=lfs merge=lfs -text
Damysus-2.7B-Chat-f16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15a3aecca2b1fc703e11c09ed5d6fa585a2cb41c7a68363cc6bb30be21b67704
3
+ size 5553825664
Damysus.png ADDED
README.md ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ library_name: transformers
6
+ tags:
7
+ - nlp
8
+ - phi
9
+ - phi-2
10
+ - instruct
11
+ base_model:
12
+ - microsoft/phi-2
13
+ datasets:
14
+ - Open-Orca/SlimOrca
15
+ - prince-canuma/TinyOrca
16
+ ---
17
+
18
+ # Model Summary
19
+ <img src="Damysus.png" width="500" alt="Damysus - the fastest giant"/>
20
+
21
+ <!-- Provide a quick summary of what the model is/does. -->
22
+ This model is a instruction-tuned version of Phi-2, a Transformer model with 2.7 billion parameters from Microsoft.
23
+ The model has undergone further training to better follow specific user instructions, enhancing its ability to perform tasks as directed and improve its interaction with users.
24
+ This additional training helps the model to understand context better, generate more accurate and relevant responses, and adapt to a wide range of language-based tasks such as:
25
+ - Questions and Answers,
26
+ - Data Extraction,
27
+ - Structured Outputs (i.e., JSON outputs),
28
+ - And providing explanations,
29
+
30
+ ## Model Description
31
+
32
+ <!-- Provide a longer summary of what this model is. -->
33
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
34
+
35
+ - **Developed by:** [Prince Canuma](https://huggingface.co/prince-canuma)
36
+ - **Model type:** Transformer
37
+ - **License:** MIT
38
+ - **Finetuned from model:** microsoft/phi-2
39
+
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
+
46
+ You can use this model to build local/cloud RAG applications.
47
+ It can serve as the:
48
+ - Answer synthesizer,
49
+ - Summarizer,
50
+ - Or query rewriter model.
51
+
52
+ ### Limitations
53
+
54
+ This model inherits some of the base model's limitations, such as:
55
+ - Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions.
56
+ - Limited Scope for code: Majority of Phi-2 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
57
+ - Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other languages might pose challenges to its comprehension, leading to potential misinterpretations or errors in response.
58
+
59
+ ## How to Get Started with the Model
60
+
61
+ Use the code below to get started with the model.
62
+
63
+ ```python
64
+ from transformers import pipeline, Conversation
65
+
66
+ chatbot = pipeline("conversational", model="prince-canuma/Damysus-2.7B-Chat")
67
+ conversation = Conversation("I'm looking for a movie - what's your favourite one?")
68
+ output = chatbot(conversation)
69
+
70
+ print(output)
71
+ ```
72
+
73
+ Or you can instatiate the model and tokenizer directly
74
+ ```python
75
+ from transformers import AutoTokenizer, AutoModelForCausalLM
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained("prince-canuma/Damysus-2.7B-Chat")
78
+ model = AutoModelForCausalLM.from_pretrained("prince-canuma/Damysus-2.7B-Chat")
79
+
80
+ inputs = tokenizer.apply_chat_template(
81
+ [
82
+ {"content":"You are an helpful AI assistant","role":"system"},
83
+ {"content":"I'm looking for a movie - what's your favourite one?","role":"user"},
84
+ ], add_generation_prompt=True, return_tensors="pt",
85
+ ).to("cuda")
86
+
87
+ outputs = model.generate(inputs, do_sample=False, max_new_tokens=256)
88
+
89
+ input_length = inputs.shape[1]
90
+ print(tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)[0])
91
+ ```
92
+
93
+ Output:
94
+ ```shell
95
+ My favorite movie is "The Shawshank Redemption."
96
+
97
+ It's a powerful and inspiring story about hope, friendship, and redemption.
98
+ The performances by Tim Robbins and Morgan Freeman are exceptional,
99
+ and the film's themes and messages are timeless.
100
+
101
+ I highly recommend it to anyone who enjoys a well-crafted and emotionally engaging story.
102
+ ```
103
+
104
+ ### Structured Output
105
+ ```python
106
+ from transformers import AutoTokenizer, AutoModelForCausalLM
107
+
108
+ tokenizer = AutoTokenizer.from_pretrained("prince-canuma/Damysus-2.7B-Chat")
109
+ model = AutoModelForCausalLM.from_pretrained("prince-canuma/Damysus-2.7B-Chat")
110
+
111
+ inputs = tokenizer.apply_chat_template(
112
+ [
113
+ {"content":"You are a Robot that ONLY outputs JSON. Use this structure: {'entities': [{'type':..., 'name':...}]}.","role":"system"},
114
+ {"content":""""Extract the entities of type 'technology' and 'file_type' in JSON format from the following passage: AI is a transformative
115
+ force in document processing employing technologies such as 'Machine Learning (ML), Natural Language Processing (NLP) and
116
+ Optical Character Recognition (OCR) to understand, interpret, and summarize text. These technologies enhance accuracy,
117
+ increase efficiency, and allow you and your company to process high volumes of data in short amount of time.
118
+ For instance, you can easily extract key points and summarize a large PDF document (i.e., 500 pages) in just a few seconds.""",
119
+ "role":"user"},
120
+ ], add_generation_prompt=True, return_tensors="pt",
121
+ ).to("cuda")
122
+
123
+ outputs = model.generate(inputs, do_sample=False, max_new_tokens=256)
124
+
125
+ input_length = inputs.shape[1]
126
+ print(tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)[0])
127
+ ```
128
+
129
+ Output:
130
+ ```json
131
+ {
132
+ "entities": [
133
+ {
134
+ "type": "technology",
135
+ "name": "Machine Learning (ML)"
136
+ },
137
+ {
138
+ "type": "technology",
139
+ "name": "Natural Language Processing (NLP)"
140
+ },
141
+ {
142
+ "type": "technology",
143
+ "name": "Optical Character Recognition (OCR)"
144
+ },
145
+ {
146
+ "type": "file_type",
147
+ "name": "PDF"
148
+ },
149
+ ]
150
+ }
151
+ ```
152
+ ## Training Details
153
+
154
+ ### Training Data
155
+
156
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
157
+ I used [SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) dataset, a new curated subset of our OpenOrca data.
158
+ In the course of this study, the [SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) dataset was used, representing a meticulously curated subset derived from the broader OpenOrca dataset. This release provides an efficient means of reaching performance on-par with using larger slices of the [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca), while only including ~500k GPT-4 completions.
159
+
160
+ Subsequently, two distinct subsets were crafted, comprising 102,000 and 1,000 samples, denoted as:
161
+
162
+ - [prince-canuma/SmallOrca](https://huggingface.co/datasets/prince-canuma/SmallOrca)
163
+ - [prince-canuma/TinyOrca](https://huggingface.co/datasets/prince-canuma/TinyOrca)
164
+
165
+ Although experimentation was conducted with both datasets, optimal results were achieved through fine-tuning on a modest set of 200 samples.
166
+ Notably, the investigation revealed that augmenting the training data beyond this threshold predominantly enhanced the model's proficiency in generating Chain-of-Thought responses.
167
+ However, it is imperative to note that the preference for Chain-of-Thought responses may not be universally applicable. Particularly in scenarios like the RAG setup,
168
+ succinct answers to prompts are often favored, especially for straightforward queries.
169
+
170
+ ### Training Procedure
171
+
172
+ #### Preprocessing
173
+
174
+ 1. Convert dataset to chatML format
175
+ 2. Remove all samples with more than 2048 tokens (Phi-2 context size)
176
+ 3. Mask instructions (System and User) at training time.
177
+
178
+ #### LoRA Config
179
+ - **lora_alpha:** 128,
180
+ - **lora_dropout:** 0.05,
181
+ - **r:** 256,
182
+ - **bias:** "none",
183
+ - **target_modules:** "all-linear",
184
+ - **task_type:** "CAUSAL_LM",
185
+
186
+ #### Training Hyperparameters
187
+
188
+ - **Training regime:** bf16 mixed precision, <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
189
+ - **max_steps:** 100,
190
+ - **per_device_train_batch_size:** 2,
191
+ - **gradient_accumulation_steps:** 2,
192
+ - **optim:** "adamw_torch_fused",
193
+ - **learning_rate:** 2e-4,
194
+ - **max_grad_norm:** 0.3,
195
+ - **warmup_ratio:** 0.03,
196
+ - **lr_scheduler_type:** "constant",
197
+
198
+ #### Trainer
199
+ - **max_seq_length:** 1744,
200
+ - **data_collator:** DataCollatorForCompletionOnlyLM
201
+
202
+ ## Evaluation
203
+
204
+ <img src="truthfulQA.png" width="800" alt="Damysus-2.7B-chat truthfulQA benchmark results"/>
205
+ <!-- This section describes the evaluation protocols and provides the results. -->
206
+
207
+ We evaluate models on 7 key benchmarks using the Eleuther AI Language Model Evaluation Harness , a unified framework to test generative language models on a large number of different evaluation tasks.
208
+
209
+ - AI2 Reasoning Challenge (25-shot) - a set of grade-school science questions.
210
+ - HellaSwag (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
211
+ - MMLU (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
212
+ - TruthfulQA (0-shot) - a test to measure a model's propensity to reproduce falsehoods commonly found online. Note: TruthfulQA is technically a 6-shot task in the Harness because each example is prepended with 6 Q/A pairs, even in the 0-shot setting.
213
+ - Winogrande (5-shot) - an adversarial and difficult Winograd benchmark at scale, for commonsense reasoning.
214
+ - GSM8k (5-shot) - diverse grade school math word problems to measure a model's ability to solve multi-step mathematical reasoning problems.
215
+ For all these evaluations, a higher score is a better score. We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
216
+
217
+ Read more [here](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
218
+
219
+ ### Results
220
+
221
+ | Model | AVG | ARC | Hellaswag | MMLU | Truthful QA | Winogrande | GSM8K |
222
+ |-------|--------:|------:|----------:|-----:|----------:|----------:|----------:|
223
+ | [NousResearch/Nous-Puffin-70B](NousResearch/Nous-Puffin-70B) | 64.91 | 67.41 | 87.37 | 69.77 | 46.77 | 83.9 | 34.27 |
224
+ | [TheBloke/Llama-2-70B-fp16](https://huggingface.co/TheBloke/Llama-2-70B-fp16) | 64.52 | 67.32 | 87.33 | 69.83 | 44.92 | 83.74 | 33.97 |
225
+ | [NousResearch/Yarn-Mistral-7B-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 59.63 | 59.9 | 82.51 | 62.96 | 41.86 | 77.27 | 33.28 |
226
+ | [Qwen1.5-4B-Chat](https://huggingface.co/Qwen/Qwen1.5-4B-Chat) | 46.79 | 43.26 | 69.73 | 55.55 | 44.79 | 64.96 | 2.43 |
227
+ | [Microsoft/phi-2](https://huggingface.co/microsoft/phi-2) | 61.33 | 61.09 | 75.11 | 58.11 | 44.47 | 74.35 | 54.81 |
228
+ | [Damysus-2.7B-Chat](https://huggingface.co/prince-canuma/Damysus-2.7B-Chat) (Ours) | 60.49 | 59.81 | 74.52 | 56.33 | **46.74** | **75.06** | 50.64 |
229
+
230
+
231
+ ## Technical Specifications
232
+
233
+ ### Compute Infrastructure
234
+
235
+ - Modal Labs
236
+
237
+ #### Hardware
238
+
239
+ - OS: Linux
240
+ - GPU: A10G
241
+
242
+ #### Libraries
243
+
244
+ - TRL
245
+ - Transformers
246
+ - PEFT
247
+ - Datasets
248
+ - Accelerate
249
+ - torch
250
+ - Wandb
251
+ - Bitsandbytes
252
+ - Plotly
253
+
254
+ ## Future work
255
+
256
+ I plan to explore the following tuning setups:
257
+ - Function calling
258
+ - DPO
259
+
260
+ ## Citation
261
+
262
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
263
+
264
+ **BibTeX:**
265
+ ```bibtex
266
+ @misc{Damysus-2.7B-Chat,
267
+ title={Damysus-2.7B-Chat} ,
268
+ author={Prince Canuma},
269
+ year={2024},
270
+ }
271
+ ```
272
+ ```bibtex
273
+ @misc{SlimOrca,
274
+ title = {SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces, with Verification},
275
+ author = {Wing Lian and Guan Wang and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
276
+ year = {2023},
277
+ publisher = {HuggingFace},
278
+ url = {https://https://huggingface.co/Open-Orca/SlimOrca}
279
+ }
280
+ ```
281
+ ```bibtex
282
+ @misc{open-llm-leaderboard,
283
+ author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
284
+ title = {Open LLM Leaderboard},
285
+ year = {2023},
286
+ publisher = {Hugging Face},
287
+ howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
288
+ }
289
+ ```
added_tokens.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257,
40
+ "<|im_end|>": 50296,
41
+ "<|im_start|>": 50295
42
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-2",
3
+ "architectures": [
4
+ "PhiForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "microsoft/phi-2--configuration_phi.PhiConfig",
9
+ "AutoModelForCausalLM": "microsoft/phi-2--modeling_phi.PhiForCausalLM"
10
+ },
11
+ "bos_token_id": 50256,
12
+ "embd_pdrop": 0.0,
13
+ "eos_token_id": 50256,
14
+ "hidden_act": "gelu_new",
15
+ "hidden_size": 2560,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 10240,
18
+ "layer_norm_eps": 1e-05,
19
+ "max_position_embeddings": 2048,
20
+ "model_type": "phi",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 32,
24
+ "partial_rotary_factor": 0.4,
25
+ "qk_layernorm": false,
26
+ "resid_pdrop": 0.1,
27
+ "rope_scaling": null,
28
+ "rope_theta": 10000.0,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.38.0.dev0",
32
+ "use_cache": true,
33
+ "vocab_size": 50297
34
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 50256,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.38.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_start|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_end|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": "<|im_start|>",
19
+ "eos_token": "<|im_end|>",
20
+ "pad_token": "<|im_end|>",
21
+ "unk_token": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ }
28
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ },
316
+ "50295": {
317
+ "content": "<|im_start|>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "50296": {
325
+ "content": "<|im_end|>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ }
332
+ },
333
+ "additional_special_tokens": [
334
+ "<|im_start|>",
335
+ "<|im_end|>"
336
+ ],
337
+ "bos_token": "<|im_start|>",
338
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
339
+ "clean_up_tokenization_spaces": true,
340
+ "eos_token": "<|im_end|>",
341
+ "model_max_length": 2048,
342
+ "pad_token": "<|im_end|>",
343
+ "tokenizer_class": "CodeGenTokenizer",
344
+ "unk_token": "<|endoftext|>"
345
+ }
truthfulQA.png ADDED

Git LFS Details

  • SHA256: b75074d858600a50e5bd61a10dd9e0ff356d5bbd4a999e0d3dc63f348af5ce22
  • Pointer size: 132 Bytes
  • Size of remote file: 2.91 MB
vocab.json ADDED
The diff for this file is too large to render. See raw diff