Automatic Speech Recognition
Transformers
Safetensors
German
whisper
Eval Results
Inference Endpoints
flozi00 commited on
Commit
288a4c7
·
verified ·
1 Parent(s): 75616e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -172
README.md CHANGED
@@ -1,199 +1,103 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
 
 
 
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - de
5
  library_name: transformers
6
+ pipeline_tag: automatic-speech-recognition
7
+ model-index:
8
+ - name: whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine
9
+ results:
10
+ - task:
11
+ type: automatic-speech-recognition
12
+ name: Speech Recognition
13
+ dataset:
14
+ name: German ASR Data-Mix
15
+ type: flozi00/asr-german-mixed
16
+ metrics:
17
+ - type: wer
18
+ value: 4.77 %
19
+ name: Test WER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ ### Summary
24
+ This model map provides information about a model based on Whisper Large v3 that has been fine-tuned for speech recognition in German. Whisper is a powerful speech recognition platform developed by OpenAI. This model has been specially optimized for processing and recognizing German speech.
25
 
 
26
 
 
27
 
28
+ ### Applications
29
+ This model can be used in various application areas, including
30
 
31
+ - Transcription of spoken German language
32
+ - Voice commands and voice control
33
+ - Automatic subtitling for German videos
34
+ - Voice-based search queries in German
35
+ - Dictation functions in word processing programs
36
 
 
37
 
38
+ ## Model family
39
 
40
+ | Model | Parameters | link |
41
+ |----------------------------------|------------|--------------------------------------------------------------|
42
+ | Whisper large v3 german | 1.54B | [link](https://huggingface.co/primeline/whisper-large-v3-german) |
43
+ | Distil-whisper large v3 german | 756M | [link](https://huggingface.co/primeline/distil-whisper-large-v3-german) |
44
+ | tiny whisper | 37.8M | [link](https://huggingface.co/primeline/whisper-tiny-german) |
45
 
 
46
 
47
+ ### Training data
48
+ The training data for this model includes a large amount of spoken German from various sources. The data was carefully selected and processed to optimize recognition performance.
49
 
 
50
 
51
+ ### Training process
52
+ The training of the model was performed with the following hyperparameters
53
 
54
+ - Batch size: 12288
55
+ - Epochs: 3
56
+ - Learning rate: 1e-6
57
+ - Data augmentation: No
58
 
 
59
 
60
+ ### How to use
61
 
62
+ ```python
63
+ import torch
64
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
65
+ from datasets import load_dataset
66
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
67
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
68
+ model_id = "primeline/whisper-large-v3-turbo-german"
69
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
70
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
71
+ )
72
+ model.to(device)
73
+ processor = AutoProcessor.from_pretrained(model_id)
74
+ pipe = pipeline(
75
+ "automatic-speech-recognition",
76
+ model=model,
77
+ tokenizer=processor.tokenizer,
78
+ feature_extractor=processor.feature_extractor,
79
+ max_new_tokens=128,
80
+ chunk_length_s=30,
81
+ batch_size=16,
82
+ return_timestamps=True,
83
+ torch_dtype=torch_dtype,
84
+ device=device,
85
+ )
86
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
87
+ sample = dataset[0]["audio"]
88
+ result = pipe(sample)
89
+ print(result["text"])
90
+ ```
91
 
 
92
 
93
+ ## [About us](https://primeline-ai.com/en/)
94
 
95
+ [![primeline AI](https://primeline-ai.com/wp-content/uploads/2024/02/pl_ai_bildwortmarke_original.svg)](https://primeline-ai.com/en/)
96
 
 
97
 
98
+ Your partner for AI infrastructure in Germany <br>
99
+ Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing. Optimized for AI training and inference.
100
 
 
101
 
 
102
 
103
+ Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)