pregonas commited on
Commit
ce717ca
·
1 Parent(s): ed37c23

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1749.05 +/- 115.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18ed8eef03c9d8ff822ab617f3b403b83e8eda4b1430a523f24024a3cae3782b
3
+ size 125197
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa0c72edf70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa0c72f1040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa0c72f10d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa0c72f1160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa0c72f11f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa0c72f1280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa0c72f1310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa0c72f13a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa0c72f1430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa0c72f14c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa0c72f1550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa0c72f15e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa0c72eeb80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "observation_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 28
39
+ ],
40
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
41
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
42
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
43
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "_np_random": null
45
+ },
46
+ "action_space": {
47
+ ":type:": "<class 'gym.spaces.box.Box'>",
48
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
49
+ "dtype": "float32",
50
+ "_shape": [
51
+ 8
52
+ ],
53
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
54
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
55
+ "bounded_below": "[ True True True True True True True True]",
56
+ "bounded_above": "[ True True True True True True True True]",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 4,
60
+ "num_timesteps": 2000000,
61
+ "_total_timesteps": 2000000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1680269869396560422,
66
+ "learning_rate": 0.0007,
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJXjk7+1ynS/r29OPgW/tT4PycG+NSfwPIRPFr6fKpU/iEvkPrOhhz4mn3K/5Fswv2QbKL9mRCE/THo0vDKUMD9U/gM+6oxiP9V8IT6If9W9B0TivlbQDr9Iwte+dfyePismdL++3Ro/vOP9vyHFiD9ceGW/yv4XQHgkI8C3jHW/ef/3P3m/GL4f3pA+bIBhPsMFKL+ZI8i+3NyHv9vuObwU6rg/lvLoP+8wwD7y6jM/r5iMv+dUnz9qFlo/sXLGPO4Qkj//koo/a1omvWMIgj0rJnS/vt0aP2AQAT8hxYg/VdQ0vwLClb9Ffzo9Gl5sPrhOG74wVFY+pMDOvR9DjD/N6wc/3SRavqGuS7/u3F++Y57FvgDRPT81Epa+660lPxzwWT6yHps/7Cwouzz0kL0xi789tEzivnx8cr7HILk+KyZ0v77dGj+84/2/IcWIPxbudb6zTV8/E+EYPtMtBD8voNK+D+RtwOQYgL9z93c9qOiVvypeq769lwe+8VmkP+s7kr5LLp6/IAo9PxZ+OjxI9po9z57xv4g1WL4Xzw9AWD8sv8i9cj5s2FQ/IXoSwCsmdL++3Ro/vOP9vyHFiD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAchga3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWy/0PQAAAAB7Zua/AAAAANsvKLsAAAAAGtzuPwAAAACSLcm9AAAAADMtAEAAAAAAFJ/0PQAAAACqwN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwDxNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCxxVL0AAAAAir38vwAAAADLr5g9AAAAAEl13D8AAAAAuMm8PQAAAADireY/AAAAABbOur0AAAAACSDyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOTUrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDl2Qu+AAAAAH4A7L8AAAAARIMDvgAAAABxPvE/AAAAAKPOlb0AAAAA9ffhPwAAAABjtJ09AAAAAHfe+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwm5O1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7cYFvgAAAAAmi/u/AAAAAEWmub0AAAAAohLePwAAAABbJh28AAAAAPuC9T8AAAAAghOuPQAAAAB7Wfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
83
+ },
84
+ "_episode_num": 0,
85
+ "use_sde": false,
86
+ "sde_sample_freq": -1,
87
+ "_current_progress_remaining": 0.0,
88
+ "ep_info_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKFC+l0HQhSMAWyUTegDjAF0lEdArazawOe8PHV9lChoBkdAoCMJIpYs/mgHTegDaAhHQK2zAuBczIp1fZQoaAZHQJT9f3Dej21oB03oA2gIR0Cts0apPykLdX2UKGgGR0CfpbJ/XoTxaAdN6ANoCEdArbosCYCyQnV9lChoBkdAm2W6gZjx1GgHTegDaAhHQK28fzDn/1h1fZQoaAZHQJ8ChEG7jDNoB03oA2gIR0CtwZUzj3mFdX2UKGgGR0CchiiHZbpvaAdN6ANoCEdArcG9tTDO1XV9lChoBkdAnAuPBrN4aGgHTegDaAhHQK3Gbf3vhIh1fZQoaAZHQJtyx/Ue+25oB03oA2gIR0CtyM/IjnmrdX2UKGgGR0CeNVwHZ9NOaAdN6ANoCEdArc6KJEYwZnV9lChoBkdAoHg8h3aBZ2gHTegDaAhHQK3OyYv38Gd1fZQoaAZHQJ3Dr8MuvlloB03oA2gIR0Ct1nQbdadMdX2UKGgGR0CgYvEroW56aAdN6ANoCEdArdjyBK+SKXV9lChoBkdAnlaadpZfUmgHTegDaAhHQK3eOQlruYx1fZQoaAZHQJdPjQswtapoB03oA2gIR0Ct3mR7AtWddX2UKGgGR0CZlxuDSPU8aAdN6ANoCEdAreMeEug6EXV9lChoBkdAn1u3R1HOKWgHTegDaAhHQK3lfwR5C4V1fZQoaAZHQJ1Xbo2XLNhoB03oA2gIR0Ct6tNkOI69dX2UKGgGR0Cfr0bSJCSiaAdN6ANoCEdAresRyEL6UXV9lChoBkdAoHofhCMP0GgHTegDaAhHQK3yqJ1q33J1fZQoaAZHQJ2rBRbbDdhoB03oA2gIR0Ct9V5RCQcQdX2UKGgGR0Cex53Hq/ucaAdN6ANoCEdArfqQBT4tYnV9lChoBkdAndZtWyTpxGgHTegDaAhHQK36vU4JeE91fZQoaAZHQJ3stZ2ZAptoB03oA2gIR0Ct/21pTMq0dX2UKGgGR0CdwrQ176YWaAdN6ANoCEdArgHIskIHDHV9lChoBkdAnSlCQT238WgHTegDaAhHQK4G7P5YYBN1fZQoaAZHQJ7WowsXizdoB03oA2gIR0CuBxWr4nF6dX2UKGgGR0CeK6hMajveaAdN6ANoCEdArg5d5dGAkXV9lChoBkdAm++wgs9SuWgHTegDaAhHQK4RsiyprDZ1fZQoaAZHQJeY+RkmQbNoB03oA2gIR0CuFwc1wYLtdX2UKGgGR0CXeUCxeLNwaAdN6ANoCEdArhcy0dBBzHV9lChoBkdAlRJ44EOiFmgHTegDaAhHQK4cILMs6JZ1fZQoaAZHQJHO91ie/YdoB03oA2gIR0CuHpn1e0HAdX2UKGgGR0CffN/+85CGaAdN6ANoCEdAriP5FVktmXV9lChoBkdAm3ZX2VVxTGgHTegDaAhHQK4kJpcHGCJ1fZQoaAZHQHQDcdo371toB03oA2gIR0CuK3yoXKr8dX2UKGgGR0Cdd0qkuYhMaAdN6ANoCEdAri7m+oLofXV9lChoBkdAnxMY7Rv3rWgHTegDaAhHQK40EoZQ53l1fZQoaAZHQJwVkuYhMaloB03oA2gIR0CuND3o1UEQdX2UKGgGR0Cfkpwnpjc3aAdN6ANoCEdArjjzh1klNXV9lChoBkdAnGHbM9r432gHTegDaAhHQK47RUKiPAB1fZQoaAZHQKBD6L74zrNoB03oA2gIR0CuQFRqoIfKdX2UKGgGR0CgfEFc6eXiaAdN6ANoCEdArkB+KhtcfXV9lChoBkdAn8rMGLUCrGgHTegDaAhHQK5HJQ0oBq91fZQoaAZHQKCvPgjQiRpoB03oA2gIR0CuSxlNlAeJdX2UKGgGR0CdbkLBsQ/YaAdN6ANoCEdArlBnDcdo4HV9lChoBkdAoD1sSVW0Z2gHTegDaAhHQK5QkIOYplV1fZQoaAZHQKAZLn8KohpoB03oA2gIR0CuVWeCsfaIdX2UKGgGR0Cgqy8zqKP5aAdN6ANoCEdArlfdE7W/anV9lChoBkdAoFUj9sJpnGgHTegDaAhHQK5dPttQ9A51fZQoaAZHQJzyqxqwhW5oB03oA2gIR0CuXWcU/OdHdX2UKGgGR0CfsvacI7eVaAdN6ANoCEdArmN8Lc9GJHV9lChoBkdAmhEVyR0U5GgHTegDaAhHQK5nVJtBOYZ1fZQoaAZHQJ8alYQrc0toB03oA2gIR0CubOh6rvLHdX2UKGgGR0CcrdqLS/j9aAdN6ANoCEdArm0QazeGf3V9lChoBkdAn9oj0pVjqmgHTegDaAhHQK5xv7TDwYt1fZQoaAZHQJ+Nnuv2XcBoB03oA2gIR0CudB97OVxCdX2UKGgGR0CgeBurp7kXaAdN6ANoCEdArnmew9q1xHV9lChoBkdAkPwXXAdn02gHTegDaAhHQK55190ihWZ1fZQoaAZHQKEjp4vexfRoB03oA2gIR0Cuf5gtOEdvdX2UKGgGR0Ce5VWhh6SlaAdN6ANoCEdAroOFuYQarHV9lChoBkdAoCI4yM1jzGgHTegDaAhHQK6Jn/lyR0V1fZQoaAZHQKCdA8/2TPloB03oA2gIR0CuicsRxtHhdX2UKGgGR0Cfy2rpJPIoaAdN6ANoCEdAro6ZvP1L8XV9lChoBkdAoJGF3bEgn2gHTegDaAhHQK6Q+SgXdj51fZQoaAZHQJzNtF6Rhc9oB03oA2gIR0CulkxWtEG8dX2UKGgGR0CG7RaiblRxaAdN6ANoCEdArpZ7AFgUlHV9lChoBkdAoBBkQK8cuWgHTegDaAhHQK6b4IHkcS51fZQoaAZHQKAvTiMo+fRoB03oA2gIR0Cun8PgWJrMdX2UKGgGR0CZ5Y90Rvm6aAdN6ANoCEdArqZHuy/sV3V9lChoBkdAmne1AE+xGGgHTegDaAhHQK6mcD7qIJt1fZQoaAZHQJf/Qy31BdFoB03oA2gIR0CuqwXyqdYodX2UKGgGR0CcbVV2zOX3aAdN6ANoCEdArq1Ufms/6nV9lChoBkdAmVk9ovi97GgHTegDaAhHQK6yc4MF2V51fZQoaAZHQJlLJ9G7SRdoB03oA2gIR0CuspzVlPJrdX2UKGgGR0Cc1RzSThYOaAdN6ANoCEdArrdtEkSmInV9lChoBkdAnmGd6w+t82gHTegDaAhHQK67C1l5GBp1fZQoaAZHQJ7XS1E3KjloB03oA2gIR0CuwkOEmICVdX2UKGgGR0Cceo0wrUb2aAdN6ANoCEdArsJx/7SApnV9lChoBkdAnz/cY64lQmgHTegDaAhHQK7HF8CPp6h1fZQoaAZHQKA8eVv/BFdoB03oA2gIR0CuyXpMQEpzdX2UKGgGR0CgL8IcR15jaAdN6ANoCEdArs6py6tknXV9lChoBkdAn7minpB5X2gHTegDaAhHQK7O0YIjW091fZQoaAZHQJ5bJ2eQMhJoB03oA2gIR0Cu02hje9BbdX2UKGgGR0CeLaqKgqVhaAdN6ANoCEdArtbFjCpFTnV9lChoBkdAn93lNYbKimgHTegDaAhHQK7eiePq9oN1fZQoaAZHQKBaXhScbzdoB03oA2gIR0Cu3rMJIDoydX2UKGgGR0Cf0IssxwhoaAdN6ANoCEdAruNv0dzXBnV9lChoBkdAmv58rupjt2gHTegDaAhHQK7l1VvMr3F1fZQoaAZHQJ8tdGRV6u5oB03oA2gIR0Cu6tIlt0mudX2UKGgGR0Ca1LUlAu7IaAdN6ANoCEdArur7FwT/Q3V9lChoBkdAnC/4o/iYLWgHTegDaAhHQK7vn6j32251fZQoaAZHQJwYcJkXk5poB03oA2gIR0Cu8k1biZOSdX2UKGgGR0CafBwrlNlAaAdN6ANoCEdArvq9nyup0nV9lChoBkdAl9q1MyrPt2gHTegDaAhHQK766g5BC2N1fZQoaAZHQJkobdsSCe5oB03oA2gIR0Cu/6M+mm+CdX2UKGgGR0CcfU97ngYQaAdN6ANoCEdArwIWAoXsPnV9lChoBkdAlLATd+G47WgHTegDaAhHQK8Ha7W/ag51fZQoaAZHQJuWBUzbeuVoB03oA2gIR0CvB5UIC2c8dX2UKGgGR0CdZRzySV4YaAdN6ANoCEdArwxf4O+ZgHVlLg=="
91
+ },
92
+ "ep_success_buffer": {
93
+ ":type:": "<class 'collections.deque'>",
94
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
+ },
96
+ "_n_updates": 100000,
97
+ "n_steps": 5,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 1.0,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.5,
102
+ "max_grad_norm": 0.5,
103
+ "normalize_advantage": false
104
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3321e47539d9be43ee4c92dca16dfb0f34bde2b4c18e083b87a4cf0cadbf41bc
3
+ size 54206
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c691212b1af054dc7cf8c084461e957fee47ec65d50f58109989db453eec76d7
3
+ size 54974
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa0c72edf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa0c72f1040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa0c72f10d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa0c72f1160>", "_build": "<function ActorCriticPolicy._build at 0x7fa0c72f11f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa0c72f1280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa0c72f1310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa0c72f13a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa0c72f1430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa0c72f14c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa0c72f1550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa0c72f15e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa0c72eeb80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680269869396560422, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJXjk7+1ynS/r29OPgW/tT4PycG+NSfwPIRPFr6fKpU/iEvkPrOhhz4mn3K/5Fswv2QbKL9mRCE/THo0vDKUMD9U/gM+6oxiP9V8IT6If9W9B0TivlbQDr9Iwte+dfyePismdL++3Ro/vOP9vyHFiD9ceGW/yv4XQHgkI8C3jHW/ef/3P3m/GL4f3pA+bIBhPsMFKL+ZI8i+3NyHv9vuObwU6rg/lvLoP+8wwD7y6jM/r5iMv+dUnz9qFlo/sXLGPO4Qkj//koo/a1omvWMIgj0rJnS/vt0aP2AQAT8hxYg/VdQ0vwLClb9Ffzo9Gl5sPrhOG74wVFY+pMDOvR9DjD/N6wc/3SRavqGuS7/u3F++Y57FvgDRPT81Epa+660lPxzwWT6yHps/7Cwouzz0kL0xi789tEzivnx8cr7HILk+KyZ0v77dGj+84/2/IcWIPxbudb6zTV8/E+EYPtMtBD8voNK+D+RtwOQYgL9z93c9qOiVvypeq769lwe+8VmkP+s7kr5LLp6/IAo9PxZ+OjxI9po9z57xv4g1WL4Xzw9AWD8sv8i9cj5s2FQ/IXoSwCsmdL++3Ro/vOP9vyHFiD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAchga3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWy/0PQAAAAB7Zua/AAAAANsvKLsAAAAAGtzuPwAAAACSLcm9AAAAADMtAEAAAAAAFJ/0PQAAAACqwN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwDxNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCxxVL0AAAAAir38vwAAAADLr5g9AAAAAEl13D8AAAAAuMm8PQAAAADireY/AAAAABbOur0AAAAACSDyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOTUrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDl2Qu+AAAAAH4A7L8AAAAARIMDvgAAAABxPvE/AAAAAKPOlb0AAAAA9ffhPwAAAABjtJ09AAAAAHfe+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwm5O1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7cYFvgAAAAAmi/u/AAAAAEWmub0AAAAAohLePwAAAABbJh28AAAAAPuC9T8AAAAAghOuPQAAAAB7Wfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKFC+l0HQhSMAWyUTegDjAF0lEdArazawOe8PHV9lChoBkdAoCMJIpYs/mgHTegDaAhHQK2zAuBczIp1fZQoaAZHQJT9f3Dej21oB03oA2gIR0Cts0apPykLdX2UKGgGR0CfpbJ/XoTxaAdN6ANoCEdArbosCYCyQnV9lChoBkdAm2W6gZjx1GgHTegDaAhHQK28fzDn/1h1fZQoaAZHQJ8ChEG7jDNoB03oA2gIR0CtwZUzj3mFdX2UKGgGR0CchiiHZbpvaAdN6ANoCEdArcG9tTDO1XV9lChoBkdAnAuPBrN4aGgHTegDaAhHQK3Gbf3vhIh1fZQoaAZHQJtyx/Ue+25oB03oA2gIR0CtyM/IjnmrdX2UKGgGR0CeNVwHZ9NOaAdN6ANoCEdArc6KJEYwZnV9lChoBkdAoHg8h3aBZ2gHTegDaAhHQK3OyYv38Gd1fZQoaAZHQJ3Dr8MuvlloB03oA2gIR0Ct1nQbdadMdX2UKGgGR0CgYvEroW56aAdN6ANoCEdArdjyBK+SKXV9lChoBkdAnlaadpZfUmgHTegDaAhHQK3eOQlruYx1fZQoaAZHQJdPjQswtapoB03oA2gIR0Ct3mR7AtWddX2UKGgGR0CZlxuDSPU8aAdN6ANoCEdAreMeEug6EXV9lChoBkdAn1u3R1HOKWgHTegDaAhHQK3lfwR5C4V1fZQoaAZHQJ1Xbo2XLNhoB03oA2gIR0Ct6tNkOI69dX2UKGgGR0Cfr0bSJCSiaAdN6ANoCEdAresRyEL6UXV9lChoBkdAoHofhCMP0GgHTegDaAhHQK3yqJ1q33J1fZQoaAZHQJ2rBRbbDdhoB03oA2gIR0Ct9V5RCQcQdX2UKGgGR0Cex53Hq/ucaAdN6ANoCEdArfqQBT4tYnV9lChoBkdAndZtWyTpxGgHTegDaAhHQK36vU4JeE91fZQoaAZHQJ3stZ2ZAptoB03oA2gIR0Ct/21pTMq0dX2UKGgGR0CdwrQ176YWaAdN6ANoCEdArgHIskIHDHV9lChoBkdAnSlCQT238WgHTegDaAhHQK4G7P5YYBN1fZQoaAZHQJ7WowsXizdoB03oA2gIR0CuBxWr4nF6dX2UKGgGR0CeK6hMajveaAdN6ANoCEdArg5d5dGAkXV9lChoBkdAm++wgs9SuWgHTegDaAhHQK4RsiyprDZ1fZQoaAZHQJeY+RkmQbNoB03oA2gIR0CuFwc1wYLtdX2UKGgGR0CXeUCxeLNwaAdN6ANoCEdArhcy0dBBzHV9lChoBkdAlRJ44EOiFmgHTegDaAhHQK4cILMs6JZ1fZQoaAZHQJHO91ie/YdoB03oA2gIR0CuHpn1e0HAdX2UKGgGR0CffN/+85CGaAdN6ANoCEdAriP5FVktmXV9lChoBkdAm3ZX2VVxTGgHTegDaAhHQK4kJpcHGCJ1fZQoaAZHQHQDcdo371toB03oA2gIR0CuK3yoXKr8dX2UKGgGR0Cdd0qkuYhMaAdN6ANoCEdAri7m+oLofXV9lChoBkdAnxMY7Rv3rWgHTegDaAhHQK40EoZQ53l1fZQoaAZHQJwVkuYhMaloB03oA2gIR0CuND3o1UEQdX2UKGgGR0Cfkpwnpjc3aAdN6ANoCEdArjjzh1klNXV9lChoBkdAnGHbM9r432gHTegDaAhHQK47RUKiPAB1fZQoaAZHQKBD6L74zrNoB03oA2gIR0CuQFRqoIfKdX2UKGgGR0CgfEFc6eXiaAdN6ANoCEdArkB+KhtcfXV9lChoBkdAn8rMGLUCrGgHTegDaAhHQK5HJQ0oBq91fZQoaAZHQKCvPgjQiRpoB03oA2gIR0CuSxlNlAeJdX2UKGgGR0CdbkLBsQ/YaAdN6ANoCEdArlBnDcdo4HV9lChoBkdAoD1sSVW0Z2gHTegDaAhHQK5QkIOYplV1fZQoaAZHQKAZLn8KohpoB03oA2gIR0CuVWeCsfaIdX2UKGgGR0Cgqy8zqKP5aAdN6ANoCEdArlfdE7W/anV9lChoBkdAoFUj9sJpnGgHTegDaAhHQK5dPttQ9A51fZQoaAZHQJzyqxqwhW5oB03oA2gIR0CuXWcU/OdHdX2UKGgGR0CfsvacI7eVaAdN6ANoCEdArmN8Lc9GJHV9lChoBkdAmhEVyR0U5GgHTegDaAhHQK5nVJtBOYZ1fZQoaAZHQJ8alYQrc0toB03oA2gIR0CubOh6rvLHdX2UKGgGR0CcrdqLS/j9aAdN6ANoCEdArm0QazeGf3V9lChoBkdAn9oj0pVjqmgHTegDaAhHQK5xv7TDwYt1fZQoaAZHQJ+Nnuv2XcBoB03oA2gIR0CudB97OVxCdX2UKGgGR0CgeBurp7kXaAdN6ANoCEdArnmew9q1xHV9lChoBkdAkPwXXAdn02gHTegDaAhHQK55190ihWZ1fZQoaAZHQKEjp4vexfRoB03oA2gIR0Cuf5gtOEdvdX2UKGgGR0Ce5VWhh6SlaAdN6ANoCEdAroOFuYQarHV9lChoBkdAoCI4yM1jzGgHTegDaAhHQK6Jn/lyR0V1fZQoaAZHQKCdA8/2TPloB03oA2gIR0CuicsRxtHhdX2UKGgGR0Cfy2rpJPIoaAdN6ANoCEdAro6ZvP1L8XV9lChoBkdAoJGF3bEgn2gHTegDaAhHQK6Q+SgXdj51fZQoaAZHQJzNtF6Rhc9oB03oA2gIR0CulkxWtEG8dX2UKGgGR0CG7RaiblRxaAdN6ANoCEdArpZ7AFgUlHV9lChoBkdAoBBkQK8cuWgHTegDaAhHQK6b4IHkcS51fZQoaAZHQKAvTiMo+fRoB03oA2gIR0Cun8PgWJrMdX2UKGgGR0CZ5Y90Rvm6aAdN6ANoCEdArqZHuy/sV3V9lChoBkdAmne1AE+xGGgHTegDaAhHQK6mcD7qIJt1fZQoaAZHQJf/Qy31BdFoB03oA2gIR0CuqwXyqdYodX2UKGgGR0CcbVV2zOX3aAdN6ANoCEdArq1Ufms/6nV9lChoBkdAmVk9ovi97GgHTegDaAhHQK6yc4MF2V51fZQoaAZHQJlLJ9G7SRdoB03oA2gIR0CuspzVlPJrdX2UKGgGR0Cc1RzSThYOaAdN6ANoCEdArrdtEkSmInV9lChoBkdAnmGd6w+t82gHTegDaAhHQK67C1l5GBp1fZQoaAZHQJ7XS1E3KjloB03oA2gIR0CuwkOEmICVdX2UKGgGR0Cceo0wrUb2aAdN6ANoCEdArsJx/7SApnV9lChoBkdAnz/cY64lQmgHTegDaAhHQK7HF8CPp6h1fZQoaAZHQKA8eVv/BFdoB03oA2gIR0CuyXpMQEpzdX2UKGgGR0CgL8IcR15jaAdN6ANoCEdArs6py6tknXV9lChoBkdAn7minpB5X2gHTegDaAhHQK7O0YIjW091fZQoaAZHQJ5bJ2eQMhJoB03oA2gIR0Cu02hje9BbdX2UKGgGR0CeLaqKgqVhaAdN6ANoCEdArtbFjCpFTnV9lChoBkdAn93lNYbKimgHTegDaAhHQK7eiePq9oN1fZQoaAZHQKBaXhScbzdoB03oA2gIR0Cu3rMJIDoydX2UKGgGR0Cf0IssxwhoaAdN6ANoCEdAruNv0dzXBnV9lChoBkdAmv58rupjt2gHTegDaAhHQK7l1VvMr3F1fZQoaAZHQJ8tdGRV6u5oB03oA2gIR0Cu6tIlt0mudX2UKGgGR0Ca1LUlAu7IaAdN6ANoCEdArur7FwT/Q3V9lChoBkdAnC/4o/iYLWgHTegDaAhHQK7vn6j32251fZQoaAZHQJwYcJkXk5poB03oA2gIR0Cu8k1biZOSdX2UKGgGR0CafBwrlNlAaAdN6ANoCEdArvq9nyup0nV9lChoBkdAl9q1MyrPt2gHTegDaAhHQK766g5BC2N1fZQoaAZHQJkobdsSCe5oB03oA2gIR0Cu/6M+mm+CdX2UKGgGR0CcfU97ngYQaAdN6ANoCEdArwIWAoXsPnV9lChoBkdAlLATd+G47WgHTegDaAhHQK8Ha7W/ag51fZQoaAZHQJuWBUzbeuVoB03oA2gIR0CvB5UIC2c8dX2UKGgGR0CdZRzySV4YaAdN6ANoCEdArwxf4O+ZgHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (1,000 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1749.052754730545, "std_reward": 115.54815222208279, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T14:42:49.308196"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eca9bf4b2e3985a864ac9d80cae1d4c279d64c360ed1c25e247820fb8ca98274
3
+ size 2136