prajjwal1 commited on
Commit
c670d7a
·
1 Parent(s): ca07cc5

updated readme

Browse files
Files changed (1) hide show
  1. README.md +43 -8
README.md CHANGED
@@ -1,6 +1,8 @@
1
- The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). These BERT variants were introduced in the paper [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). These models are supposed to be trained on a downstream task.
2
 
3
- If you use the model, please consider citing the paper
 
 
4
  ```
5
  @misc{bhargava2021generalization,
6
  title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
@@ -10,14 +12,47 @@ If you use the model, please consider citing the paper
10
  archivePrefix={arXiv},
11
  primaryClass={cs.CL}
12
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ```
 
 
 
 
 
 
 
14
  Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
15
 
 
 
16
 
17
- You can check out:
18
- - `prajjwal1/bert-tiny` (L=2, H=128)
19
- - `prajjwal1/bert-mini` (L=4, H=256)
20
- - `prajjwal1/bert-small` (L=4, H=512)
21
- - `prajjwal1/bert-medium` (L=8, H=512)
 
 
 
 
 
22
 
23
- [@prajjwal_1](https://twitter.com/prajjwal_1)
 
1
+ The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
2
 
3
+ This is one of the smaller pre-trained BERT variants, together with [bert-mini](https://huggingface.co/prajjwal1/bert-mini), [bert-tiny](https://huggingface.co/prajjwal1/bert-tiny), [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), and ported to HF for the study [Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics](https://arxiv.org/abs/2110.01518). These models are supposed to be trained on a downstream task.
4
+
5
+ If you use the model, please consider citing both the papers:
6
  ```
7
  @misc{bhargava2021generalization,
8
  title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
 
12
  archivePrefix={arXiv},
13
  primaryClass={cs.CL}
14
  }
15
+
16
+ @article{DBLP:journals/corr/abs-1908-08962,
17
+ author = {Iulia Turc and
18
+ Ming{-}Wei Chang and
19
+ Kenton Lee and
20
+ Kristina Toutanova},
21
+ title = {Well-Read Students Learn Better: The Impact of Student Initialization
22
+ on Knowledge Distillation},
23
+ journal = {CoRR},
24
+ volume = {abs/1908.08962},
25
+ year = {2019},
26
+ url = {http://arxiv.org/abs/1908.08962},
27
+ eprinttype = {arXiv},
28
+ eprint = {1908.08962},
29
+ timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
30
+ biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
31
+ bibsource = {dblp computer science bibliography, https://dblp.org}
32
+ }
33
+
34
  ```
35
+
36
+ Other models to check out:
37
+ - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
38
+ - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
39
+ - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
40
+ - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
41
+
42
  Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
43
 
44
+ Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
45
+
46
 
47
+ ---
48
+ language:
49
+ - en
50
+
51
+ tags:
52
+ - BERT
53
+ - MNLI
54
+ - NLI
55
+ - transformer
56
+ - pre-training
57
 
58
+ ---