ppo-LunarLander-v2 / config.json
prahalath27's picture
Upload PPO LunarLander-v2 trained agent
070363a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e9258000280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9258000310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e92580003a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9258000430>", "_build": "<function ActorCriticPolicy._build at 0x7e92580004c0>", "forward": "<function ActorCriticPolicy.forward at 0x7e9258000550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e92580005e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e9258000670>", "_predict": "<function ActorCriticPolicy._predict at 0x7e9258000700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e9258000790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9258000820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e92580008b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e9257fa9d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703275119163529982, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDGrr1Hnrg/DsYmvwcI9bwWSO68QVeOvgAAAAAAAAAAM9X+vK7XjbqCN7+2DTnKsbpY/Dpde941AACAPwAAgD9mI0m+Sjr6PjJVcT5trKK+W/h/Peb8Tz0AAAAAAAAAACbCuL3JGzY/blqGPkBuuL6VrQs+seeLPQAAAAAAAAAATQx0PYAroD+uZ2M+0AG4vr32yT1cHq09AAAAAAAAAABmfjI7GmUZPvpPDL72Aj2+GrfhvAKYq70AAAAAAAAAAKaSa770GQu9vksHvOe/krpFsnM+u1tbOwAAgD8AAIA/TdqvPuGORz84zO+97Te5vlaRJj55pDO9AAAAAAAAAAAzFu68qnG0PwTQsL3wiWW+bwKvuy1i/L0AAAAAAAAAAE2+jb0Uypq69x40NbMHeDAlWAq7pj1UtAAAgD8AAIA/ZjpGvQxVtj86aOe+hOp0vRQdk7x/pCC+AAAAAAAAAADztcA9y5i3P7oPET9znu69wozUPKpyij4AAAAAAAAAAA2stj1DIH8/U+rMPRCVo747beI9hUv9vAAAAAAAAAAAzSGmvHkuEj4DgeO913B3vngFwbxb/Le9AAAAAAAAAAAznaG8DOygP2iqm728Cry+nDTNvQ46BL4AAAAAAAAAAEADvb2um426yMJ/NkSkgjBUDvm6p/qTtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFI+jz7MxGmMAWyUS56MAXSUR0CYzNigTRICdX2UKGgGR0BwfeCTUy57aAdNIwFoCEdAmM1T0Yj0MHV9lChoBkdAc0orCFbml2gHTQACaAhHQJjP+MIeHSF1fZQoaAZHQHEC0WZZ0S1oB01NAWgIR0CY0ApM6BAfdX2UKGgGR0ByuoWKuSwGaAdL/mgIR0CY0D3wkPc0dX2UKGgGR0Bx7EK6WgOCaAdNsQFoCEdAmNEJtrKvFHV9lChoBkdASztAeJYT02gHS/BoCEdAmNGCNKh+OXV9lChoBkdAb8tKraM72mgHTTUBaAhHQJjRkVFhG6R1fZQoaAZHQHKkiyQgcLloB00IAWgIR0CY0kvfCQ9zdX2UKGgGR0ByR1Q3xWkraAdL/WgIR0CY1hHq/ub7dX2UKGgGR0BvM2njyWiUaAdNMAFoCEdAmNamWY4Qz3V9lChoBkdAcYyt+TeO42gHTUwBaAhHQJjXcsbvPTp1fZQoaAZHQHEEwccU/OdoB00bAWgIR0CY18Ok+HJtdX2UKGgGR0Bwmuecx0uEaAdNFwFoCEdAmNfwCGN70HV9lChoBkdAcH8bILgGbGgHTWMBaAhHQJjYGd4FA3V1fZQoaAZHQHE20aVD8cdoB00QAWgIR0CY2BkQf6oEdX2UKGgGR0Bth6iRGMGYaAdNPQFoCEdAmNipV0cOsnV9lChoBkdAcjIchC+lCWgHTUABaAhHQJjYqHfuTid1fZQoaAZHQG2dtUn5SFZoB00QAWgIR0CY2jM85jpcdX2UKGgGR0BwUh3bEgnuaAdNHAFoCEdAmNpqQFLWZ3V9lChoBkdAben7WuoxYmgHTTcBaAhHQJjbTjR2KVJ1fZQoaAZHQHLhWUnogV5oB00SAWgIR0CY206XSjQBdX2UKGgGR0BwaSEcsDnvaAdNFAFoCEdAmNtRSpBHC3V9lChoBkdAcMSQPI4lyGgHTTMBaAhHQJjb2Cz1K5F1fZQoaAZHQG4tyPdVNpNoB00lAWgIR0CY3ETGYKIBdX2UKGgGR0ByxB+EytV8aAdL8mgIR0CY3eKuSwGGdX2UKGgGR0BwOBwFTvRaaAdNHQFoCEdAmN/yEQGwA3V9lChoBkdAcbGuUliSaGgHTQsBaAhHQJjggV+I/JN1fZQoaAZHQG7yoGyHEdhoB00ZAWgIR0CY4OBj4HopdX2UKGgGR0By6QoVmBe5aAdNNwFoCEdAmOG4HHFPznV9lChoBkdAcg+fZmI0qGgHTSIBaAhHQJjiOB3A2yd1fZQoaAZHQHIsyQcPvrpoB01RAWgIR0CY42ZLIxQBdX2UKGgGR0ByX5je9Ba+aAdNQQFoCEdAmONwA2hqTXV9lChoBkdAbsXylvZRK2gHTQABaAhHQJjkH52yLQ51fZQoaAZHQHJdwLVnVXpoB00iAWgIR0CY5B20Re1KdX2UKGgGR0BxGL9uP3i8aAdNHwFoCEdAmOQ1KwpvxnV9lChoBkdAbujghKUVz2gHTRoBaAhHQJjk7s/pt791fZQoaAZHQHFgK8L8aXNoB02KAWgIR0CY5UI3zcyndX2UKGgGR0BzOOLR8c+8aAdNLwFoCEdAmOWTU7Sy+3V9lChoBkdAcwZPRRdhRmgHTR4BaAhHQJjlo3dbgTB1fZQoaAZHQHE6DUExIrhoB00eAWgIR0CY5gqTbFjvdX2UKGgGR0BwM9QHiWE9aAdNFwFoCEdAmOdjXjENv3V9lChoBkdARPtbqyGBWmgHS+NoCEdAmOghs2vSt3V9lChoBkdAck+MIu5BkmgHTTABaAhHQJj9YMc6vJR1fZQoaAZHQEWlmyxA0KtoB0vbaAhHQJj+EEZBLPF1fZQoaAZHQG8brLIPsiVoB01RAWgIR0CY/mSKWLP2dX2UKGgGR0BtuI0hvBJqaAdNJQFoCEdAmP54Yzi0fHV9lChoBkdAcfrwXIlt0mgHTSIBaAhHQJkArUQTVUd1fZQoaAZHQGz7Wb5M10loB01CAWgIR0CZAL4Ia99MdX2UKGgGR0BwLsqe9SMtaAdNEQFoCEdAmQDOJk5IYnV9lChoBkdAbPpRiw0O3GgHTSkBaAhHQJkBAHHFPzp1fZQoaAZHQHB7sny/bj9oB00WAWgIR0CZAQ+3Ytg8dX2UKGgGR0BxKfin5zo2aAdL/WgIR0CZARo1k1/EdX2UKGgGR0Bx+jQC0WuYaAdL/GgIR0CZAXRChN/OdX2UKGgGR0Bx5cprk8zRaAdNHQFoCEdAmQMoLkS26XV9lChoBkdAbh5ye7L+xWgHTQwBaAhHQJkDOS3b2151fZQoaAZHQG+CgE2YOUdoB000AWgIR0CZBCU1AJLNdX2UKGgGR0Bv6tvOyE+QaAdNFgFoCEdAmQWVa0QbuXV9lChoBkdAcqXy+Yc/+2gHTTkBaAhHQJkIO9Gqgh91fZQoaAZHQHG0nPE87p5oB00tAWgIR0CZCmvhIe5ndX2UKGgGR0Bw0zpgTh5xaAdNNAFoCEdAmQuhhUipvXV9lChoBkdAcl+u6mO2iWgHTQkBaAhHQJkL/+PzWf91fZQoaAZHQHEOu/QBxPxoB00RAWgIR0CZDCWaMJhOdX2UKGgGR0BvXMEmplz2aAdNPwFoCEdAmQxSKJl8PXV9lChoBkdAcPd6aLGaQWgHTRwBaAhHQJkMp5t3wCt1fZQoaAZHQG7lsmfGuLdoB01OAWgIR0CZDKc7hegMdX2UKGgGR0BwO5chTwUhaAdNIgFoCEdAmQzYHPeHi3V9lChoBkdAcvvs54nndWgHTScBaAhHQJkNSP0Zm7J1fZQoaAZHQHND9thuwX9oB00hAWgIR0CZDWcPOIIodX2UKGgGR0BsqgX/HYHxaAdNPAFoCEdAmQ3bGaQV9HV9lChoBkdAbF7zpX6qKmgHTQIBaAhHQJkOjhbW3Bp1fZQoaAZHQHAT0aqCHypoB005AWgIR0CZD3RNATqTdX2UKGgGR0BxQnUNKAavaAdNSQFoCEdAmQ/0BKcurnV9lChoBkdAb6fOkcjqwGgHTS0BaAhHQJkQ5l4C6pZ1fZQoaAZHQGvF5U96kZdoB00wAWgIR0CZEwPvrnkldX2UKGgGR0BwpWR5kbxWaAdNJgFoCEdAmRTfPHDJl3V9lChoBkdAcLYA7gbZOGgHTQEBaAhHQJkWFclgMMJ1fZQoaAZHQHBXLT+ee4FoB00gAWgIR0CZFjfPX05EdX2UKGgGR0ByM18neBQOaAdNIQFoCEdAmRao9X9zfnV9lChoBkdAcBgSxJNCaGgHTTcBaAhHQJkXQm5UcXF1fZQoaAZHQHGdZpvgm7doB00gAWgIR0CZF4Qu27WedX2UKGgGR0Bx9v7EYO2BaAdNUQFoCEdAmRgRxkupTHV9lChoBkdAcB/hd+ocaWgHTWQBaAhHQJkYmbmU4aR1fZQoaAZHQHGia4+bExZoB00gAWgIR0CZGRrC3w1BdX2UKGgGR0BxuroFFDv3aAdNCgFoCEdAmRlhFiKBNHV9lChoBkdAch/XsgMc62gHTUYBaAhHQJkZo0Jng511fZQoaAZHQHOeQC0WuYBoB00dAWgIR0CZGqIhyKekdX2UKGgGR0ByAeOtGNJfaAdNkQFoCEdAmRsbUwztTnV9lChoBkdAcHkMEA5q/WgHTToBaAhHQJkcujDbah91fZQoaAZHQHIvh6By0a9oB00KAWgIR0CZHUarWAf/dX2UKGgGR0ByiyTFERapaAdNFgFoCEdAmR9Rw++ueXV9lChoBkdAIQFjVhCtzWgHS9toCEdAmR/+1KGtZHV9lChoBkdAcE2gM+eOGWgHTRUBaAhHQJkgg6S1Vo91fZQoaAZHQGyUe0PYnOVoB005AWgIR0CZIqdsBQvYdX2UKGgGR0BwR8D0UXYUaAdNXwFoCEdAmSPTzundf3V9lChoBkdAcIPVsUIsy2gHTQgBaAhHQJkj3z+WGAV1fZQoaAZHQHLqF/Ue+25oB00WAWgIR0CZI91+AmRedX2UKGgGR0ByuQtAcDKYaAdNRAFoCEdAmSQlUMoc73V9lChoBkdAcGTsRQJokGgHTS0BaAhHQJkkSI9C/oJ1fZQoaAZHQHGfSY5T6zpoB00bAWgIR0CZJFQxvegtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}