Post
1989
‼️Sentence Transformers v3.0 is out! You can now train and finetune embedding models with multi-GPU training, bf16 support, loss logging, callbacks & much more. I also release 50+ datasets to train on.
1️⃣ Training Refactor
Embedding models can now be trained using an extensive trainer with a lot of powerful features:
- MultiGPU Training (Data Parallelism (DP) and Distributed Data Parallelism (DDP))
- bf16 training support; loss logging
- Evaluation datasets + evaluation loss
- Improved callback support + an excellent Weights & Biases integration
- Gradient checkpointing, gradient accumulation
- Improved model card generation
- Resuming from a training checkpoint without performance loss
- Hyperparameter Optimization
and much more!
Read my detailed blogpost to learn about the components that make up this new training approach: https://huggingface.co/blog/train-sentence-transformers
2️⃣ Similarity Score
Not sure how to compare embeddings? Don't worry, you can now use
3️⃣ Additional Kwargs
Sentence Transformers relies on various Transformers instances (AutoModel, AutoTokenizer, AutoConfig), but it was hard to provide valuable keyword arguments to these (like 'torch_dtype=torch.bfloat16' to load a model a lower precision for 2x inference speedup). This is now easy!
4️⃣ Hyperparameter Optimization
Sentence Transformers now ships with HPO, allowing you to effectively choose your hyperparameters for your data and task.
5️⃣ Dataset Release
To help you out with finetuning models, I've released 50+ ready-to-go datasets that can be used with training or finetuning embedding models: sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552
Full release notes: https://github.com/UKPLab/sentence-transformers/releases/tag/v3.0.0
1️⃣ Training Refactor
Embedding models can now be trained using an extensive trainer with a lot of powerful features:
- MultiGPU Training (Data Parallelism (DP) and Distributed Data Parallelism (DDP))
- bf16 training support; loss logging
- Evaluation datasets + evaluation loss
- Improved callback support + an excellent Weights & Biases integration
- Gradient checkpointing, gradient accumulation
- Improved model card generation
- Resuming from a training checkpoint without performance loss
- Hyperparameter Optimization
and much more!
Read my detailed blogpost to learn about the components that make up this new training approach: https://huggingface.co/blog/train-sentence-transformers
2️⃣ Similarity Score
Not sure how to compare embeddings? Don't worry, you can now use
model.similarity(embeddings1, embeddings2)
and you'll get your similarity scores immediately. Model authors can specify their desired similarity score, so you don't have to worry about it anymore!3️⃣ Additional Kwargs
Sentence Transformers relies on various Transformers instances (AutoModel, AutoTokenizer, AutoConfig), but it was hard to provide valuable keyword arguments to these (like 'torch_dtype=torch.bfloat16' to load a model a lower precision for 2x inference speedup). This is now easy!
4️⃣ Hyperparameter Optimization
Sentence Transformers now ships with HPO, allowing you to effectively choose your hyperparameters for your data and task.
5️⃣ Dataset Release
To help you out with finetuning models, I've released 50+ ready-to-go datasets that can be used with training or finetuning embedding models: sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552
Full release notes: https://github.com/UKPLab/sentence-transformers/releases/tag/v3.0.0