porxelek commited on
Commit
739952f
·
verified ·
1 Parent(s): 00b984c

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Enable audio recorder app
14
+ - text: Open video camera mode
15
+ - text: Show recent chats
16
+ - text: Switch to instant camera usage mode
17
+ - text: Could you switch to video camera mode?
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 256 tokens
51
+ - **Number of Classes:** 3 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:-----------|:----------------------------------------------------------------------------------------------------------------------------------|
65
+ | microphone | <ul><li>'Launch microphone app'</li><li>'Launch recording app'</li><li>'Access mic app'</li></ul> |
66
+ | history | <ul><li>'View chat logs'</li><li>'Display conversation details'</li><li>'Show history'</li></ul> |
67
+ | camera | <ul><li>'Switch to webcam mode please'</li><li>'Could you switch to video camera mode?'</li><li>'Open the photo webcam'</li></ul> |
68
+
69
+ ## Evaluation
70
+
71
+ ### Metrics
72
+ | Label | Accuracy |
73
+ |:--------|:---------|
74
+ | **all** | 1.0 |
75
+
76
+ ## Uses
77
+
78
+ ### Direct Use for Inference
79
+
80
+ First install the SetFit library:
81
+
82
+ ```bash
83
+ pip install setfit
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+
88
+ ```python
89
+ from setfit import SetFitModel
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SetFitModel.from_pretrained("porxelek/word-classification")
93
+ # Run inference
94
+ preds = model("Show recent chats")
95
+ ```
96
+
97
+ <!--
98
+ ### Downstream Use
99
+
100
+ *List how someone could finetune this model on their own dataset.*
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Set Metrics
124
+ | Training set | Min | Median | Max |
125
+ |:-------------|:----|:-------|:----|
126
+ | Word count | 2 | 4.1364 | 10 |
127
+
128
+ | Label | Training Sample Count |
129
+ |:-----------|:----------------------|
130
+ | camera | 250 |
131
+ | history | 150 |
132
+ | microphone | 150 |
133
+
134
+ ### Training Hyperparameters
135
+ - batch_size: (64, 64)
136
+ - num_epochs: (1, 1)
137
+ - max_steps: -1
138
+ - sampling_strategy: oversampling
139
+ - body_learning_rate: (2e-05, 1e-05)
140
+ - head_learning_rate: 0.01
141
+ - loss: CosineSimilarityLoss
142
+ - distance_metric: cosine_distance
143
+ - margin: 0.25
144
+ - end_to_end: False
145
+ - use_amp: False
146
+ - warmup_proportion: 0.1
147
+ - seed: 42
148
+ - eval_max_steps: -1
149
+ - load_best_model_at_end: True
150
+
151
+ ### Training Results
152
+ | Epoch | Step | Training Loss | Validation Loss |
153
+ |:-------:|:--------:|:-------------:|:---------------:|
154
+ | 0.0003 | 1 | 0.1209 | - |
155
+ | 0.0164 | 50 | 0.1449 | - |
156
+ | 0.0328 | 100 | 0.046 | - |
157
+ | 0.0492 | 150 | 0.0099 | - |
158
+ | 0.0656 | 200 | 0.0049 | - |
159
+ | 0.0820 | 250 | 0.0036 | - |
160
+ | 0.0985 | 300 | 0.0022 | - |
161
+ | 0.1149 | 350 | 0.0015 | - |
162
+ | 0.1313 | 400 | 0.0011 | - |
163
+ | 0.1477 | 450 | 0.001 | - |
164
+ | 0.1641 | 500 | 0.0009 | - |
165
+ | 0.1805 | 550 | 0.0009 | - |
166
+ | 0.1969 | 600 | 0.0009 | - |
167
+ | 0.2133 | 650 | 0.0008 | - |
168
+ | 0.2297 | 700 | 0.0007 | - |
169
+ | 0.2461 | 750 | 0.0006 | - |
170
+ | 0.2626 | 800 | 0.0006 | - |
171
+ | 0.2790 | 850 | 0.0006 | - |
172
+ | 0.2954 | 900 | 0.0006 | - |
173
+ | 0.3118 | 950 | 0.0005 | - |
174
+ | 0.3282 | 1000 | 0.0004 | - |
175
+ | 0.3446 | 1050 | 0.0005 | - |
176
+ | 0.3610 | 1100 | 0.0005 | - |
177
+ | 0.3774 | 1150 | 0.0004 | - |
178
+ | 0.3938 | 1200 | 0.0004 | - |
179
+ | 0.4102 | 1250 | 0.0004 | - |
180
+ | 0.4266 | 1300 | 0.0005 | - |
181
+ | 0.4431 | 1350 | 0.0004 | - |
182
+ | 0.4595 | 1400 | 0.0003 | - |
183
+ | 0.4759 | 1450 | 0.0003 | - |
184
+ | 0.4923 | 1500 | 0.0003 | - |
185
+ | 0.5087 | 1550 | 0.0003 | - |
186
+ | 0.5251 | 1600 | 0.0003 | - |
187
+ | 0.5415 | 1650 | 0.0003 | - |
188
+ | 0.5579 | 1700 | 0.0003 | - |
189
+ | 0.5743 | 1750 | 0.0003 | - |
190
+ | 0.5907 | 1800 | 0.0003 | - |
191
+ | 0.6072 | 1850 | 0.0002 | - |
192
+ | 0.6236 | 1900 | 0.0003 | - |
193
+ | 0.6400 | 1950 | 0.0002 | - |
194
+ | 0.6564 | 2000 | 0.0002 | - |
195
+ | 0.6728 | 2050 | 0.0002 | - |
196
+ | 0.6892 | 2100 | 0.0003 | - |
197
+ | 0.7056 | 2150 | 0.0002 | - |
198
+ | 0.7220 | 2200 | 0.0002 | - |
199
+ | 0.7384 | 2250 | 0.0002 | - |
200
+ | 0.7548 | 2300 | 0.0002 | - |
201
+ | 0.7713 | 2350 | 0.0002 | - |
202
+ | 0.7877 | 2400 | 0.0002 | - |
203
+ | 0.8041 | 2450 | 0.0002 | - |
204
+ | 0.8205 | 2500 | 0.0002 | - |
205
+ | 0.8369 | 2550 | 0.0002 | - |
206
+ | 0.8533 | 2600 | 0.0002 | - |
207
+ | 0.8697 | 2650 | 0.0002 | - |
208
+ | 0.8861 | 2700 | 0.0002 | - |
209
+ | 0.9025 | 2750 | 0.0002 | - |
210
+ | 0.9189 | 2800 | 0.0002 | - |
211
+ | 0.9353 | 2850 | 0.0002 | - |
212
+ | 0.9518 | 2900 | 0.0002 | - |
213
+ | 0.9682 | 2950 | 0.0002 | - |
214
+ | 0.9846 | 3000 | 0.0002 | - |
215
+ | **1.0** | **3047** | **-** | **0.0** |
216
+
217
+ * The bold row denotes the saved checkpoint.
218
+ ### Framework Versions
219
+ - Python: 3.10.12
220
+ - SetFit: 1.0.3
221
+ - Sentence Transformers: 3.0.1
222
+ - Transformers: 4.39.0
223
+ - PyTorch: 2.3.1+cu121
224
+ - Datasets: 2.20.0
225
+ - Tokenizers: 0.15.2
226
+
227
+ ## Citation
228
+
229
+ ### BibTeX
230
+ ```bibtex
231
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
232
+ doi = {10.48550/ARXIV.2209.11055},
233
+ url = {https://arxiv.org/abs/2209.11055},
234
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
235
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
236
+ title = {Efficient Few-Shot Learning Without Prompts},
237
+ publisher = {arXiv},
238
+ year = {2022},
239
+ copyright = {Creative Commons Attribution 4.0 International}
240
+ }
241
+ ```
242
+
243
+ <!--
244
+ ## Glossary
245
+
246
+ *Clearly define terms in order to be accessible across audiences.*
247
+ -->
248
+
249
+ <!--
250
+ ## Model Card Authors
251
+
252
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
253
+ -->
254
+
255
+ <!--
256
+ ## Model Card Contact
257
+
258
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
259
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_3047",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "camera",
5
+ "history",
6
+ "microphone"
7
+ ]
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef716de1af815df89a03cc9ca0cea5960d00d1c71d2f2dda30b3924327735c92
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1d7a111eede97b42219763ff997d3ade8bc9b62420dcfb4a307239b58016e6f
3
+ size 10207
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff