popcornell commited on
Commit
80814eb
·
1 Parent(s): 4c1e26a

removed README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -148
README.md DELETED
@@ -1,148 +0,0 @@
1
- ---
2
- tags:
3
- - pyannote
4
- - pyannote-audio
5
- - pyannote-audio-model
6
- - audio
7
- - voice
8
- - speech
9
- - speaker
10
- - speaker-segmentation
11
- - voice-activity-detection
12
- - overlapped-speech-detection
13
- - resegmentation
14
- datasets:
15
- - ami
16
- - dihard
17
- - voxconverse
18
- license: mit
19
- inference: false
20
- extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers apply for grants to improve it further. If you are an academic researcher, please cite the relevant papers in your own publications using the model. If you work for a company, please consider contributing back to pyannote.audio development (e.g. through unrestricted gifts). We also provide scientific consulting services around speaker diarization and machine listening."
21
- extra_gated_fields:
22
- Company/university: text
23
- Website: text
24
- I plan to use this model for (task, type of audio data, etc): text
25
- ---
26
-
27
- # 🎹 Speaker segmentation
28
-
29
- [Paper](http://arxiv.org/abs/2104.04045) | [Demo](https://huggingface.co/spaces/pyannote/pretrained-pipelines) | [Blog post](https://herve.niderb.fr/fastpages/2022/10/23/One-speaker-segmentation-model-to-rule-them-all)
30
-
31
- ![Example](example.png)
32
-
33
- ## Usage
34
-
35
- Relies on pyannote.audio 2.1.1: see [installation instructions](https://github.com/pyannote/pyannote-audio).
36
-
37
- ```python
38
- # 1. visit hf.co/pyannote/segmentation and accept user conditions
39
- # 2. visit hf.co/settings/tokens to create an access token
40
- # 3. instantiate pretrained model
41
- from pyannote.audio import Model
42
- model = Model.from_pretrained("pyannote/segmentation",
43
- use_auth_token="ACCESS_TOKEN_GOES_HERE")
44
- ```
45
-
46
- ### Voice activity detection
47
-
48
- ```python
49
- from pyannote.audio.pipelines import VoiceActivityDetection
50
- pipeline = VoiceActivityDetection(segmentation=model)
51
- HYPER_PARAMETERS = {
52
- # onset/offset activation thresholds
53
- "onset": 0.5, "offset": 0.5,
54
- # remove speech regions shorter than that many seconds.
55
- "min_duration_on": 0.0,
56
- # fill non-speech regions shorter than that many seconds.
57
- "min_duration_off": 0.0
58
- }
59
- pipeline.instantiate(HYPER_PARAMETERS)
60
- vad = pipeline("audio.wav")
61
- # `vad` is a pyannote.core.Annotation instance containing speech regions
62
- ```
63
-
64
- ### Overlapped speech detection
65
-
66
- ```python
67
- from pyannote.audio.pipelines import OverlappedSpeechDetection
68
- pipeline = OverlappedSpeechDetection(segmentation=model)
69
- pipeline.instantiate(HYPER_PARAMETERS)
70
- osd = pipeline("audio.wav")
71
- # `osd` is a pyannote.core.Annotation instance containing overlapped speech regions
72
- ```
73
-
74
- ### Resegmentation
75
-
76
- ```python
77
- from pyannote.audio.pipelines import Resegmentation
78
- pipeline = Resegmentation(segmentation=model,
79
- diarization="baseline")
80
- pipeline.instantiate(HYPER_PARAMETERS)
81
- resegmented_baseline = pipeline({"audio": "audio.wav", "baseline": baseline})
82
- # where `baseline` should be provided as a pyannote.core.Annotation instance
83
- ```
84
-
85
- ### Raw scores
86
-
87
- ```python
88
- from pyannote.audio import Inference
89
- inference = Inference(model)
90
- segmentation = inference("audio.wav")
91
- # `segmentation` is a pyannote.core.SlidingWindowFeature
92
- # instance containing raw segmentation scores like the
93
- # one pictured above (output)
94
- ```
95
-
96
- ## Support
97
-
98
- For commercial enquiries and scientific consulting, please contact [me](mailto:[email protected]).
99
- For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository.
100
-
101
- ## Citation
102
-
103
- ```bibtex
104
- @inproceedings{Bredin2021,
105
- Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}},
106
- Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine},
107
- Booktitle = {Proc. Interspeech 2021},
108
- Address = {Brno, Czech Republic},
109
- Month = {August},
110
- Year = {2021},
111
- ```
112
-
113
- ```bibtex
114
- @inproceedings{Bredin2020,
115
- Title = {{pyannote.audio: neural building blocks for speaker diarization}},
116
- Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
117
- Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
118
- Address = {Barcelona, Spain},
119
- Month = {May},
120
- Year = {2020},
121
- }
122
- ```
123
-
124
- ## Reproducible research
125
-
126
- In order to reproduce the results of the paper ["End-to-end speaker segmentation for overlap-aware resegmentation
127
- "](https://arxiv.org/abs/2104.04045), use `pyannote/segmentation@Interspeech2021` with the following hyper-parameters:
128
-
129
- | Voice activity detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
130
- | ------------------------ | ------- | -------- | ----------------- | ------------------ |
131
- | AMI Mix-Headset | 0.684 | 0.577 | 0.181 | 0.037 |
132
- | DIHARD3 | 0.767 | 0.377 | 0.136 | 0.067 |
133
- | VoxConverse | 0.767 | 0.713 | 0.182 | 0.501 |
134
-
135
- | Overlapped speech detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
136
- | --------------------------- | ------- | -------- | ----------------- | ------------------ |
137
- | AMI Mix-Headset | 0.448 | 0.362 | 0.116 | 0.187 |
138
- | DIHARD3 | 0.430 | 0.320 | 0.091 | 0.144 |
139
- | VoxConverse | 0.587 | 0.426 | 0.337 | 0.112 |
140
-
141
- | Resegmentation of VBx | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
142
- | --------------------- | ------- | -------- | ----------------- | ------------------ |
143
- | AMI Mix-Headset | 0.542 | 0.527 | 0.044 | 0.705 |
144
- | DIHARD3 | 0.592 | 0.489 | 0.163 | 0.182 |
145
- | VoxConverse | 0.537 | 0.724 | 0.410 | 0.563 |
146
-
147
- Expected outputs (and VBx baseline) are also provided in the `/reproducible_research` sub-directories.
148
-