pneubauer commited on
Commit
097131e
·
1 Parent(s): 7c6e94a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.83 +/- 0.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcfcfb2375ee21a28bc21b68442bcb049e72833fc93da5175af7fb90980dfb55
3
+ size 108095
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fed77f421f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fed77f3b990>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675432449669015148,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADzDHP4+wsj+qnH+/tjyAvvWlGb/NY6W+4qLOv/ESoD8GFK4+7qWGP9ETL7/Enq+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4730888 0.00723645 0.5858602 ]\n [0.4730888 0.00723645 0.5858602 ]\n [0.4730888 0.00723645 0.5858602 ]\n [0.4730888 0.00723645 0.5858602 ]]",
60
+ "desired_goal": "[[ 1.5561541 1.3960131 -0.99848425]\n [-0.2504632 -0.60018855 -0.32302704]\n [-1.6143458 1.250578 0.33999652]\n [ 1.0519388 -0.6838961 -1.3720326 ]]",
61
+ "observation": "[[ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2JgSPYRtVD3u1oo9zUBfPKlf5b39KV4+CWQRvvWRFb4fTtw9l3QTPTHAij3JWI89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.03579029 0.05186225 0.06779276]\n [ 0.01362629 -0.11199886 0.21695705]\n [-0.14198317 -0.1460646 0.10757088]\n [ 0.03599986 0.06774939 0.06999356]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGyrG+ZvgGcCUhpRSlIwBbJRLMowBdJRHQKYURC4z7/J1fZQoaAZoCWgPQwhB8s6hDIURwJSGlFKUaBVLMmgWR0CmFAt5MURGdX2UKGgGaAloD0MIkncOZajK/7+UhpRSlGgVSzJoFkdAphPRtDUmUnV9lChoBmgJaA9DCIfCZ+vgYP2/lIaUUpRoFUsyaBZHQKYTlWdVea91fZQoaAZoCWgPQwj2Rq0wfQ8SwJSGlFKUaBVLMmgWR0CmFWOrZJ05dX2UKGgGaAloD0MIJ0pCIm1j9r+UhpRSlGgVSzJoFkdAphUqzJIUanV9lChoBmgJaA9DCFQZxt0g2g3AlIaUUpRoFUsyaBZHQKYU8VN5+ph1fZQoaAZoCWgPQwh3SDFAognvv5SGlFKUaBVLMmgWR0CmFLTZHuqndX2UKGgGaAloD0MImKYIcHoHEMCUhpRSlGgVSzJoFkdAphZr9KmKqHV9lChoBmgJaA9DCHkiiPNwAvO/lIaUUpRoFUsyaBZHQKYWMtbs4T91fZQoaAZoCWgPQwhgH5268tkDwJSGlFKUaBVLMmgWR0CmFflAeJYUdX2UKGgGaAloD0MIpfPhWYIM/b+UhpRSlGgVSzJoFkdAphW8yeqaPXV9lChoBmgJaA9DCGt/Z3v0BgnAlIaUUpRoFUsyaBZHQKYXbM6ij+J1fZQoaAZoCWgPQwgei21S0Rj1v5SGlFKUaBVLMmgWR0CmFzPRzBAOdX2UKGgGaAloD0MI/YUeMXreEsCUhpRSlGgVSzJoFkdAphb6VII4VHV9lChoBmgJaA9DCHke3J21ewnAlIaUUpRoFUsyaBZHQKYWvdznzQN1fZQoaAZoCWgPQwj7PbFOle8IwJSGlFKUaBVLMmgWR0CmGGNdZ7ojdX2UKGgGaAloD0MI0uRiDKzj9r+UhpRSlGgVSzJoFkdAphgqYsunM3V9lChoBmgJaA9DCAWm07oNigfAlIaUUpRoFUsyaBZHQKYX8IldC3R1fZQoaAZoCWgPQwhlxAWgUbr1v5SGlFKUaBVLMmgWR0CmF7PeP7vYdX2UKGgGaAloD0MI9Pv+zYvzCcCUhpRSlGgVSzJoFkdAphlKs0YTCnV9lChoBmgJaA9DCM+j4v+OyAzAlIaUUpRoFUsyaBZHQKYZEaOPvKF1fZQoaAZoCWgPQwgEN1K2SNoJwJSGlFKUaBVLMmgWR0CmGNgGB4D+dX2UKGgGaAloD0MIMH+FzJWhAsCUhpRSlGgVSzJoFkdAphibO5avBHV9lChoBmgJaA9DCAd7E0NywhLAlIaUUpRoFUsyaBZHQKYaRZrYXft1fZQoaAZoCWgPQwjXijbHuY0AwJSGlFKUaBVLMmgWR0CmGgxrzoU0dX2UKGgGaAloD0MImBk2yvrtBcCUhpRSlGgVSzJoFkdAphnSjYZl4HV9lChoBmgJaA9DCIgRwqONY/y/lIaUUpRoFUsyaBZHQKYZlgZTAFh1fZQoaAZoCWgPQwh1AwXeyYcQwJSGlFKUaBVLMmgWR0CmGzyf16E8dX2UKGgGaAloD0MI/7Pmx1+a/b+UhpRSlGgVSzJoFkdAphsDtoi9qXV9lChoBmgJaA9DCNDyPLg76/q/lIaUUpRoFUsyaBZHQKYayfdRBNV1fZQoaAZoCWgPQwjYKsHicCYAwJSGlFKUaBVLMmgWR0CmGo04rBj4dX2UKGgGaAloD0MI5dTOMLUlCsCUhpRSlGgVSzJoFkdAphw8uL74z3V9lChoBmgJaA9DCA8J3/sbtArAlIaUUpRoFUsyaBZHQKYcA8IzFdd1fZQoaAZoCWgPQwhaR1UTRF0JwJSGlFKUaBVLMmgWR0CmG8omois5dX2UKGgGaAloD0MIpyVWRiN/B8CUhpRSlGgVSzJoFkdAphuNh/iHZnV9lChoBmgJaA9DCH9t/fSftQDAlIaUUpRoFUsyaBZHQKYdZH4oJAt1fZQoaAZoCWgPQwhgj4mUZrP0v5SGlFKUaBVLMmgWR0CmHSu3DvVmdX2UKGgGaAloD0MIVvXyO03GA8CUhpRSlGgVSzJoFkdAphzx9Vmz0HV9lChoBmgJaA9DCL3jFB3J1RHAlIaUUpRoFUsyaBZHQKYctYraufV1fZQoaAZoCWgPQwjtmpDWGHQQwJSGlFKUaBVLMmgWR0CmHm0H6dlNdX2UKGgGaAloD0MIyO2XT1ZcF8CUhpRSlGgVSzJoFkdAph40NayKN3V9lChoBmgJaA9DCCbg10gSlBDAlIaUUpRoFUsyaBZHQKYd+pDNQj51fZQoaAZoCWgPQwh+w0SDFLwKwJSGlFKUaBVLMmgWR0CmHb349HMEdX2UKGgGaAloD0MIYcQ+ARTjBsCUhpRSlGgVSzJoFkdAph+Cx/ustHV9lChoBmgJaA9DCHbj3ZGxegjAlIaUUpRoFUsyaBZHQKYfSfxMFll1fZQoaAZoCWgPQwgBFY4glUINwJSGlFKUaBVLMmgWR0CmHxBUR3/xdX2UKGgGaAloD0MIxOi5ha4EEsCUhpRSlGgVSzJoFkdAph7T1ZkkKXV9lChoBmgJaA9DCNf34SAhyvq/lIaUUpRoFUsyaBZHQKYgsq6vq1R1fZQoaAZoCWgPQwj9TShEwCH9v5SGlFKUaBVLMmgWR0CmIHnbypaSdX2UKGgGaAloD0MIcM6I0t7g/b+UhpRSlGgVSzJoFkdApiBA++ueSXV9lChoBmgJaA9DCOiC+pY5vQTAlIaUUpRoFUsyaBZHQKYgBLPD50t1fZQoaAZoCWgPQwgHms+523UAwJSGlFKUaBVLMmgWR0CmIcmsvIwNdX2UKGgGaAloD0MICRUcXhARD8CUhpRSlGgVSzJoFkdApiGQv38GcHV9lChoBmgJaA9DCK5kx0YgPhPAlIaUUpRoFUsyaBZHQKYhVyJ9Aop1fZQoaAZoCWgPQwh48umxLcMDwJSGlFKUaBVLMmgWR0CmIRqZ2IO6dX2UKGgGaAloD0MIpd3oYz7AE8CUhpRSlGgVSzJoFkdApiLp0Qsf73V9lChoBmgJaA9DCNv9KsB3+wnAlIaUUpRoFUsyaBZHQKYisQPqcEx1fZQoaAZoCWgPQwjr/rEQHcITwJSGlFKUaBVLMmgWR0CmInen62v0dX2UKGgGaAloD0MIuVSlLa7x/L+UhpRSlGgVSzJoFkdApiI7KDCgsnV9lChoBmgJaA9DCIrKhjWVZQXAlIaUUpRoFUsyaBZHQKYkAoOQQtl1fZQoaAZoCWgPQwjn/BTHgdf4v5SGlFKUaBVLMmgWR0CmI8mY0EX+dX2UKGgGaAloD0MIfH2tS40QAcCUhpRSlGgVSzJoFkdApiOP+qBEr3V9lChoBmgJaA9DCDaVRWEXRQvAlIaUUpRoFUsyaBZHQKYjU163RXx1fZQoaAZoCWgPQwivRKD6BzEGwJSGlFKUaBVLMmgWR0CmJQDoQnQZdX2UKGgGaAloD0MILubnhqaMAsCUhpRSlGgVSzJoFkdApiTHvv0AcXV9lChoBmgJaA9DCJViR+NQnwfAlIaUUpRoFUsyaBZHQKYkjedkJ8h1fZQoaAZoCWgPQwjZmNcRh8wHwJSGlFKUaBVLMmgWR0CmJFE4NqgzdX2UKGgGaAloD0MILskBu5pcD8CUhpRSlGgVSzJoFkdApibORvFWGXV9lChoBmgJaA9DCKLQsu4fC/6/lIaUUpRoFUsyaBZHQKYmljpcHGF1fZQoaAZoCWgPQwiO6QlLPCAFwJSGlFKUaBVLMmgWR0CmJl2912aEdX2UKGgGaAloD0MIoUrNHmjlAMCUhpRSlGgVSzJoFkdApiYjVvuPWHV9lChoBmgJaA9DCO4jtybdFv+/lIaUUpRoFUsyaBZHQKYoo0VrRBx1fZQoaAZoCWgPQwgxQKIJFHEGwJSGlFKUaBVLMmgWR0CmKGsa86FNdX2UKGgGaAloD0MI1VxuMNSBBMCUhpRSlGgVSzJoFkdApigymygPE3V9lChoBmgJaA9DCFRU/Urnw/6/lIaUUpRoFUsyaBZHQKYn91EmY0F1fZQoaAZoCWgPQwgSFD/G3HX/v5SGlFKUaBVLMmgWR0CmKm/51vETdX2UKGgGaAloD0MI2ozTEFVYA8CUhpRSlGgVSzJoFkdApio4CEHt4XV9lChoBmgJaA9DCN+I7lnXaArAlIaUUpRoFUsyaBZHQKYp/szEaVF1fZQoaAZoCWgPQwhv05/9SDECwJSGlFKUaBVLMmgWR0CmKcMwUQCkdX2UKGgGaAloD0MIqio0EMuGAcCUhpRSlGgVSzJoFkdApiw3yqdYn3V9lChoBmgJaA9DCEJ6ihwiTgfAlIaUUpRoFUsyaBZHQKYr/yuIRAd1fZQoaAZoCWgPQwh07QvohTsCwJSGlFKUaBVLMmgWR0CmK8Z7HAARdX2UKGgGaAloD0MIlZ1+UBdpDMCUhpRSlGgVSzJoFkdApiuKQ3gk1XV9lChoBmgJaA9DCIdu9gfKbQPAlIaUUpRoFUsyaBZHQKYuGLKFIup1fZQoaAZoCWgPQwhwYd14d4QMwJSGlFKUaBVLMmgWR0CmLeB5X2dvdX2UKGgGaAloD0MI7s9FQ8YDAsCUhpRSlGgVSzJoFkdApi2n8baRIXV9lChoBmgJaA9DCBAEyNCxsxPAlIaUUpRoFUsyaBZHQKYtbGNrCWN1fZQoaAZoCWgPQwhDHsGNlI0AwJSGlFKUaBVLMmgWR0CmL0ois4kvdX2UKGgGaAloD0MI2xZlNsjUEMCUhpRSlGgVSzJoFkdApi8SAz544nV9lChoBmgJaA9DCCYapOAp5P+/lIaUUpRoFUsyaBZHQKYu2S7oSth1fZQoaAZoCWgPQwjAriZPWQ0EwJSGlFKUaBVLMmgWR0CmLp1RtP56dX2UKGgGaAloD0MIgnAFFOpp+L+UhpRSlGgVSzJoFkdApjBl4eLeh3V9lChoBmgJaA9DCHOfHAWIQgPAlIaUUpRoFUsyaBZHQKYwLOGj9GZ1fZQoaAZoCWgPQwgKuVLPgpACwJSGlFKUaBVLMmgWR0CmL/M189fUdX2UKGgGaAloD0MItvRoqifzBsCUhpRSlGgVSzJoFkdApi+2m78Nx3V9lChoBmgJaA9DCNdR1QRRd/e/lIaUUpRoFUsyaBZHQKYxX5Y5ksl1fZQoaAZoCWgPQwi6aMh4lAoJwJSGlFKUaBVLMmgWR0CmMSa2v0ROdX2UKGgGaAloD0MIv2TjwRZbD8CUhpRSlGgVSzJoFkdApjDtK02LpHV9lChoBmgJaA9DCESLbOf7SQLAlIaUUpRoFUsyaBZHQKYwsFQl8gJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69429fb93ff6cbf27efb6fc9481faede7b0ede31a04712512fbb22c77dd08c19
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e70044aee0d7aa16e415a4333083bbaa36151ca10c64ab596eaaf4889e95a0e
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fed77f421f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fed77f3b990>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675432449669015148, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/sjjyPrkf7Tvv+hU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADzDHP4+wsj+qnH+/tjyAvvWlGb/NY6W+4qLOv/ESoD8GFK4+7qWGP9ETL7/Enq+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmyOPI+uR/tO+/6FT8D+g28nVwDuwp3lrmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4730888 0.00723645 0.5858602 ]\n [0.4730888 0.00723645 0.5858602 ]\n [0.4730888 0.00723645 0.5858602 ]\n [0.4730888 0.00723645 0.5858602 ]]", "desired_goal": "[[ 1.5561541 1.3960131 -0.99848425]\n [-0.2504632 -0.60018855 -0.32302704]\n [-1.6143458 1.250578 0.33999652]\n [ 1.0519388 -0.6838961 -1.3720326 ]]", "observation": "[[ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]\n [ 4.7308880e-01 7.2364477e-03 5.8586019e-01 -8.6655645e-03\n -2.0044215e-03 -2.8698921e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2JgSPYRtVD3u1oo9zUBfPKlf5b39KV4+CWQRvvWRFb4fTtw9l3QTPTHAij3JWI89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03579029 0.05186225 0.06779276]\n [ 0.01362629 -0.11199886 0.21695705]\n [-0.14198317 -0.1460646 0.10757088]\n [ 0.03599986 0.06774939 0.06999356]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGyrG+ZvgGcCUhpRSlIwBbJRLMowBdJRHQKYURC4z7/J1fZQoaAZoCWgPQwhB8s6hDIURwJSGlFKUaBVLMmgWR0CmFAt5MURGdX2UKGgGaAloD0MIkncOZajK/7+UhpRSlGgVSzJoFkdAphPRtDUmUnV9lChoBmgJaA9DCIfCZ+vgYP2/lIaUUpRoFUsyaBZHQKYTlWdVea91fZQoaAZoCWgPQwj2Rq0wfQ8SwJSGlFKUaBVLMmgWR0CmFWOrZJ05dX2UKGgGaAloD0MIJ0pCIm1j9r+UhpRSlGgVSzJoFkdAphUqzJIUanV9lChoBmgJaA9DCFQZxt0g2g3AlIaUUpRoFUsyaBZHQKYU8VN5+ph1fZQoaAZoCWgPQwh3SDFAognvv5SGlFKUaBVLMmgWR0CmFLTZHuqndX2UKGgGaAloD0MImKYIcHoHEMCUhpRSlGgVSzJoFkdAphZr9KmKqHV9lChoBmgJaA9DCHkiiPNwAvO/lIaUUpRoFUsyaBZHQKYWMtbs4T91fZQoaAZoCWgPQwhgH5268tkDwJSGlFKUaBVLMmgWR0CmFflAeJYUdX2UKGgGaAloD0MIpfPhWYIM/b+UhpRSlGgVSzJoFkdAphW8yeqaPXV9lChoBmgJaA9DCGt/Z3v0BgnAlIaUUpRoFUsyaBZHQKYXbM6ij+J1fZQoaAZoCWgPQwgei21S0Rj1v5SGlFKUaBVLMmgWR0CmFzPRzBAOdX2UKGgGaAloD0MI/YUeMXreEsCUhpRSlGgVSzJoFkdAphb6VII4VHV9lChoBmgJaA9DCHke3J21ewnAlIaUUpRoFUsyaBZHQKYWvdznzQN1fZQoaAZoCWgPQwj7PbFOle8IwJSGlFKUaBVLMmgWR0CmGGNdZ7ojdX2UKGgGaAloD0MI0uRiDKzj9r+UhpRSlGgVSzJoFkdAphgqYsunM3V9lChoBmgJaA9DCAWm07oNigfAlIaUUpRoFUsyaBZHQKYX8IldC3R1fZQoaAZoCWgPQwhlxAWgUbr1v5SGlFKUaBVLMmgWR0CmF7PeP7vYdX2UKGgGaAloD0MI9Pv+zYvzCcCUhpRSlGgVSzJoFkdAphlKs0YTCnV9lChoBmgJaA9DCM+j4v+OyAzAlIaUUpRoFUsyaBZHQKYZEaOPvKF1fZQoaAZoCWgPQwgEN1K2SNoJwJSGlFKUaBVLMmgWR0CmGNgGB4D+dX2UKGgGaAloD0MIMH+FzJWhAsCUhpRSlGgVSzJoFkdAphibO5avBHV9lChoBmgJaA9DCAd7E0NywhLAlIaUUpRoFUsyaBZHQKYaRZrYXft1fZQoaAZoCWgPQwjXijbHuY0AwJSGlFKUaBVLMmgWR0CmGgxrzoU0dX2UKGgGaAloD0MImBk2yvrtBcCUhpRSlGgVSzJoFkdAphnSjYZl4HV9lChoBmgJaA9DCIgRwqONY/y/lIaUUpRoFUsyaBZHQKYZlgZTAFh1fZQoaAZoCWgPQwh1AwXeyYcQwJSGlFKUaBVLMmgWR0CmGzyf16E8dX2UKGgGaAloD0MI/7Pmx1+a/b+UhpRSlGgVSzJoFkdAphsDtoi9qXV9lChoBmgJaA9DCNDyPLg76/q/lIaUUpRoFUsyaBZHQKYayfdRBNV1fZQoaAZoCWgPQwjYKsHicCYAwJSGlFKUaBVLMmgWR0CmGo04rBj4dX2UKGgGaAloD0MI5dTOMLUlCsCUhpRSlGgVSzJoFkdAphw8uL74z3V9lChoBmgJaA9DCA8J3/sbtArAlIaUUpRoFUsyaBZHQKYcA8IzFdd1fZQoaAZoCWgPQwhaR1UTRF0JwJSGlFKUaBVLMmgWR0CmG8omois5dX2UKGgGaAloD0MIpyVWRiN/B8CUhpRSlGgVSzJoFkdAphuNh/iHZnV9lChoBmgJaA9DCH9t/fSftQDAlIaUUpRoFUsyaBZHQKYdZH4oJAt1fZQoaAZoCWgPQwhgj4mUZrP0v5SGlFKUaBVLMmgWR0CmHSu3DvVmdX2UKGgGaAloD0MIVvXyO03GA8CUhpRSlGgVSzJoFkdAphzx9Vmz0HV9lChoBmgJaA9DCL3jFB3J1RHAlIaUUpRoFUsyaBZHQKYctYraufV1fZQoaAZoCWgPQwjtmpDWGHQQwJSGlFKUaBVLMmgWR0CmHm0H6dlNdX2UKGgGaAloD0MIyO2XT1ZcF8CUhpRSlGgVSzJoFkdAph40NayKN3V9lChoBmgJaA9DCCbg10gSlBDAlIaUUpRoFUsyaBZHQKYd+pDNQj51fZQoaAZoCWgPQwh+w0SDFLwKwJSGlFKUaBVLMmgWR0CmHb349HMEdX2UKGgGaAloD0MIYcQ+ARTjBsCUhpRSlGgVSzJoFkdAph+Cx/ustHV9lChoBmgJaA9DCHbj3ZGxegjAlIaUUpRoFUsyaBZHQKYfSfxMFll1fZQoaAZoCWgPQwgBFY4glUINwJSGlFKUaBVLMmgWR0CmHxBUR3/xdX2UKGgGaAloD0MIxOi5ha4EEsCUhpRSlGgVSzJoFkdAph7T1ZkkKXV9lChoBmgJaA9DCNf34SAhyvq/lIaUUpRoFUsyaBZHQKYgsq6vq1R1fZQoaAZoCWgPQwj9TShEwCH9v5SGlFKUaBVLMmgWR0CmIHnbypaSdX2UKGgGaAloD0MIcM6I0t7g/b+UhpRSlGgVSzJoFkdApiBA++ueSXV9lChoBmgJaA9DCOiC+pY5vQTAlIaUUpRoFUsyaBZHQKYgBLPD50t1fZQoaAZoCWgPQwgHms+523UAwJSGlFKUaBVLMmgWR0CmIcmsvIwNdX2UKGgGaAloD0MICRUcXhARD8CUhpRSlGgVSzJoFkdApiGQv38GcHV9lChoBmgJaA9DCK5kx0YgPhPAlIaUUpRoFUsyaBZHQKYhVyJ9Aop1fZQoaAZoCWgPQwh48umxLcMDwJSGlFKUaBVLMmgWR0CmIRqZ2IO6dX2UKGgGaAloD0MIpd3oYz7AE8CUhpRSlGgVSzJoFkdApiLp0Qsf73V9lChoBmgJaA9DCNv9KsB3+wnAlIaUUpRoFUsyaBZHQKYisQPqcEx1fZQoaAZoCWgPQwjr/rEQHcITwJSGlFKUaBVLMmgWR0CmInen62v0dX2UKGgGaAloD0MIuVSlLa7x/L+UhpRSlGgVSzJoFkdApiI7KDCgsnV9lChoBmgJaA9DCIrKhjWVZQXAlIaUUpRoFUsyaBZHQKYkAoOQQtl1fZQoaAZoCWgPQwjn/BTHgdf4v5SGlFKUaBVLMmgWR0CmI8mY0EX+dX2UKGgGaAloD0MIfH2tS40QAcCUhpRSlGgVSzJoFkdApiOP+qBEr3V9lChoBmgJaA9DCDaVRWEXRQvAlIaUUpRoFUsyaBZHQKYjU163RXx1fZQoaAZoCWgPQwivRKD6BzEGwJSGlFKUaBVLMmgWR0CmJQDoQnQZdX2UKGgGaAloD0MILubnhqaMAsCUhpRSlGgVSzJoFkdApiTHvv0AcXV9lChoBmgJaA9DCJViR+NQnwfAlIaUUpRoFUsyaBZHQKYkjedkJ8h1fZQoaAZoCWgPQwjZmNcRh8wHwJSGlFKUaBVLMmgWR0CmJFE4NqgzdX2UKGgGaAloD0MILskBu5pcD8CUhpRSlGgVSzJoFkdApibORvFWGXV9lChoBmgJaA9DCKLQsu4fC/6/lIaUUpRoFUsyaBZHQKYmljpcHGF1fZQoaAZoCWgPQwiO6QlLPCAFwJSGlFKUaBVLMmgWR0CmJl2912aEdX2UKGgGaAloD0MIoUrNHmjlAMCUhpRSlGgVSzJoFkdApiYjVvuPWHV9lChoBmgJaA9DCO4jtybdFv+/lIaUUpRoFUsyaBZHQKYoo0VrRBx1fZQoaAZoCWgPQwgxQKIJFHEGwJSGlFKUaBVLMmgWR0CmKGsa86FNdX2UKGgGaAloD0MI1VxuMNSBBMCUhpRSlGgVSzJoFkdApigymygPE3V9lChoBmgJaA9DCFRU/Urnw/6/lIaUUpRoFUsyaBZHQKYn91EmY0F1fZQoaAZoCWgPQwgSFD/G3HX/v5SGlFKUaBVLMmgWR0CmKm/51vETdX2UKGgGaAloD0MI2ozTEFVYA8CUhpRSlGgVSzJoFkdApio4CEHt4XV9lChoBmgJaA9DCN+I7lnXaArAlIaUUpRoFUsyaBZHQKYp/szEaVF1fZQoaAZoCWgPQwhv05/9SDECwJSGlFKUaBVLMmgWR0CmKcMwUQCkdX2UKGgGaAloD0MIqio0EMuGAcCUhpRSlGgVSzJoFkdApiw3yqdYn3V9lChoBmgJaA9DCEJ6ihwiTgfAlIaUUpRoFUsyaBZHQKYr/yuIRAd1fZQoaAZoCWgPQwh07QvohTsCwJSGlFKUaBVLMmgWR0CmK8Z7HAARdX2UKGgGaAloD0MIlZ1+UBdpDMCUhpRSlGgVSzJoFkdApiuKQ3gk1XV9lChoBmgJaA9DCIdu9gfKbQPAlIaUUpRoFUsyaBZHQKYuGLKFIup1fZQoaAZoCWgPQwhwYd14d4QMwJSGlFKUaBVLMmgWR0CmLeB5X2dvdX2UKGgGaAloD0MI7s9FQ8YDAsCUhpRSlGgVSzJoFkdApi2n8baRIXV9lChoBmgJaA9DCBAEyNCxsxPAlIaUUpRoFUsyaBZHQKYtbGNrCWN1fZQoaAZoCWgPQwhDHsGNlI0AwJSGlFKUaBVLMmgWR0CmL0ois4kvdX2UKGgGaAloD0MI2xZlNsjUEMCUhpRSlGgVSzJoFkdApi8SAz544nV9lChoBmgJaA9DCCYapOAp5P+/lIaUUpRoFUsyaBZHQKYu2S7oSth1fZQoaAZoCWgPQwjAriZPWQ0EwJSGlFKUaBVLMmgWR0CmLp1RtP56dX2UKGgGaAloD0MIgnAFFOpp+L+UhpRSlGgVSzJoFkdApjBl4eLeh3V9lChoBmgJaA9DCHOfHAWIQgPAlIaUUpRoFUsyaBZHQKYwLOGj9GZ1fZQoaAZoCWgPQwgKuVLPgpACwJSGlFKUaBVLMmgWR0CmL/M189fUdX2UKGgGaAloD0MItvRoqifzBsCUhpRSlGgVSzJoFkdApi+2m78Nx3V9lChoBmgJaA9DCNdR1QRRd/e/lIaUUpRoFUsyaBZHQKYxX5Y5ksl1fZQoaAZoCWgPQwi6aMh4lAoJwJSGlFKUaBVLMmgWR0CmMSa2v0ROdX2UKGgGaAloD0MIv2TjwRZbD8CUhpRSlGgVSzJoFkdApjDtK02LpHV9lChoBmgJaA9DCESLbOf7SQLAlIaUUpRoFUsyaBZHQKYwsFQl8gJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (748 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.833714738395065, "std_reward": 0.9393301545374632, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T14:41:33.918756"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a2d9207e3716d140fd5caa209fe35051af0ba946017f21b1879f92c37a71576
3
+ size 3056