Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,85 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
7 |
+
pipeline_tag: token-classification
|
8 |
+
---
|
9 |
+
|
10 |
+
<div align="center">
|
11 |
+
<h1>
|
12 |
+
MedSSS-8B-PRM
|
13 |
+
</h1>
|
14 |
+
</div>
|
15 |
+
|
16 |
+
<div align="center">
|
17 |
+
<a href="https://github.com/pixas/MedSSS" target="_blank">GitHub</a> | <a href="" target="_blank">Paper</a>
|
18 |
+
</div>
|
19 |
+
|
20 |
+
# <span>Introduction</span>
|
21 |
+
**MedSSS-PRM** is a the PRM model designed for slow-thinking medical reasoning. It will assign a `[0-1]` float value for every internal reasoning step of **MedSSS-Policy**.
|
22 |
+
|
23 |
+
For more information, visit our GitHub repository:
|
24 |
+
[https://github.com/pixas/MedSSS](https://github.com/pixas/MedSSS).
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# <span>Usage</span>
|
30 |
+
We build the PRM model as a LoRA adapter, which saves the memory to use it.
|
31 |
+
As this LoRA adapter is built on `Meta-Llama3.1-8B-Instruct`, you need to first prepare the base model in your platform.
|
32 |
+
|
33 |
+
```python
|
34 |
+
|
35 |
+
def obtain_prm_value_for_single_pair(tokenizer, value_model, inputs, outputs):
|
36 |
+
# `outputs` generated by the MedSSS-Policy
|
37 |
+
response = outputs
|
38 |
+
completions = [f"Step" + completion if not completion.startswith("Step") else completion for k, completion in enumerate(outputs.split("\n\nStep"))]
|
39 |
+
|
40 |
+
messages = [
|
41 |
+
{"role": "user", "content": inputs},
|
42 |
+
{"role": "assistant", "content": response}
|
43 |
+
]
|
44 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
|
45 |
+
|
46 |
+
response_begin_index = input_text.index(response)
|
47 |
+
|
48 |
+
pre_response_input = input_text[:response_begin_index]
|
49 |
+
after_response_input = input_text[response_begin_index + len(response):]
|
50 |
+
completion_ids = [
|
51 |
+
tokenizer(completion + "\n\n", add_special_tokens=False)['input_ids'] for completion in completions
|
52 |
+
]
|
53 |
+
|
54 |
+
response_id = list(chain(*completion_ids))
|
55 |
+
pre_response_id = tokenizer(pre_response_input, add_special_tokens=False)['input_ids']
|
56 |
+
after_response_id = tokenizer(after_response_input, add_special_tokens=False)['input_ids']
|
57 |
+
|
58 |
+
|
59 |
+
input_ids = pre_response_id + response_id + after_response_id
|
60 |
+
|
61 |
+
value = value_model(input_ids=torch.tensor(input_ids).unsqueeze(0).to(value_model.device)) # [1, N]
|
62 |
+
|
63 |
+
completion_index = []
|
64 |
+
for i, completion in enumerate(completion_ids):
|
65 |
+
if i == 0:
|
66 |
+
completion_index.append(len(completion) + len(pre_response_id) - 1)
|
67 |
+
else:
|
68 |
+
completion_index.append(completion_index[-1] + len(completion))
|
69 |
+
|
70 |
+
step_value = value[0, completion_index].cpu().numpy().tolist()
|
71 |
+
return step_value
|
72 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
73 |
+
from peft import PeftModel
|
74 |
+
base_model = AutoModelForTokenClassification.from_pretrained("meta-llama/Llama-3.1-8B-Instruct",torch_dtype="auto",device_map="auto")
|
75 |
+
model = PeftModel.from_pretrained(base_model, "pixas/MedSSS_PRM", torc_dtype="auto", device_map="auto")
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained("pixas/MedSSS_PRM")
|
77 |
+
steps
|
78 |
+
input_text = "How to stop a cough?"
|
79 |
+
step_wise_generation = "Step 0: Let's break down this problem step by step.\n\nStep 1: First [omitted]"
|
80 |
+
|
81 |
+
value = obtain_prm_value_for_single_pair(tokenizer, model, input_text, step_wise_generation)
|
82 |
+
print(value)
|
83 |
+
```
|
84 |
+
|
85 |
+
MedSSS-PRM uses "\n\nStep" to separate intermediate steps. So the token classification happens before the next "Step k: " or the end of the sequence.
|