Pittawat Taveekitworachai commited on
Commit
e7922dc
·
1 Parent(s): 50ecc4b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -4
README.md CHANGED
@@ -1,8 +1,9 @@
1
  ---
2
  license: apache-2.0
3
  tags:
4
- - image-classification
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: vit-base-letter
8
  results: []
@@ -13,7 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # vit-base-letter
15
 
16
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the pittawat/letter_recognition dataset.
 
 
 
17
 
18
  ## Model description
19
 
@@ -33,14 +37,52 @@ More information needed
33
 
34
  The following hyperparameters were used during training:
35
  - learning_rate: 0.0002
36
- - train_batch_size: 16
37
- - eval_batch_size: 8
38
  - seed: 42
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: linear
41
  - num_epochs: 4
42
  - mixed_precision_training: Native AMP
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ### Framework versions
45
 
46
  - Transformers 4.26.1
 
1
  ---
2
  license: apache-2.0
3
  tags:
 
4
  - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
  model-index:
8
  - name: vit-base-letter
9
  results: []
 
14
 
15
  # vit-base-letter
16
 
17
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0559
20
+ - Accuracy: 0.9865
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 0.0002
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 16
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - num_epochs: 4
46
  - mixed_precision_training: Native AMP
47
 
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.5539 | 0.12 | 100 | 0.5576 | 0.9308 |
53
+ | 0.2688 | 0.25 | 200 | 0.2371 | 0.9665 |
54
+ | 0.1568 | 0.37 | 300 | 0.1829 | 0.9688 |
55
+ | 0.1684 | 0.49 | 400 | 0.1611 | 0.9662 |
56
+ | 0.1584 | 0.62 | 500 | 0.1340 | 0.9673 |
57
+ | 0.1569 | 0.74 | 600 | 0.1933 | 0.9531 |
58
+ | 0.0992 | 0.86 | 700 | 0.1031 | 0.9781 |
59
+ | 0.0573 | 0.98 | 800 | 0.1024 | 0.9781 |
60
+ | 0.0359 | 1.11 | 900 | 0.0950 | 0.9804 |
61
+ | 0.0961 | 1.23 | 1000 | 0.1200 | 0.9723 |
62
+ | 0.0334 | 1.35 | 1100 | 0.0995 | 0.975 |
63
+ | 0.0855 | 1.48 | 1200 | 0.0791 | 0.9815 |
64
+ | 0.0902 | 1.6 | 1300 | 0.0981 | 0.9765 |
65
+ | 0.0583 | 1.72 | 1400 | 0.1192 | 0.9712 |
66
+ | 0.0683 | 1.85 | 1500 | 0.0692 | 0.9846 |
67
+ | 0.1188 | 1.97 | 1600 | 0.0931 | 0.9785 |
68
+ | 0.0366 | 2.09 | 1700 | 0.0919 | 0.9804 |
69
+ | 0.0276 | 2.21 | 1800 | 0.0667 | 0.9846 |
70
+ | 0.0309 | 2.34 | 1900 | 0.0599 | 0.9858 |
71
+ | 0.0183 | 2.46 | 2000 | 0.0892 | 0.9769 |
72
+ | 0.0431 | 2.58 | 2100 | 0.0663 | 0.985 |
73
+ | 0.0424 | 2.71 | 2200 | 0.0643 | 0.9862 |
74
+ | 0.0453 | 2.83 | 2300 | 0.0646 | 0.9862 |
75
+ | 0.0528 | 2.95 | 2400 | 0.0550 | 0.985 |
76
+ | 0.0045 | 3.08 | 2500 | 0.0579 | 0.9846 |
77
+ | 0.007 | 3.2 | 2600 | 0.0517 | 0.9885 |
78
+ | 0.0048 | 3.32 | 2700 | 0.0584 | 0.9865 |
79
+ | 0.019 | 3.44 | 2800 | 0.0560 | 0.9873 |
80
+ | 0.0038 | 3.57 | 2900 | 0.0515 | 0.9881 |
81
+ | 0.0219 | 3.69 | 3000 | 0.0527 | 0.9881 |
82
+ | 0.0117 | 3.81 | 3100 | 0.0523 | 0.9888 |
83
+ | 0.0035 | 3.94 | 3200 | 0.0559 | 0.9865 |
84
+
85
+
86
  ### Framework versions
87
 
88
  - Transformers 4.26.1