pittawat commited on
Commit
dc03f47
·
1 Parent(s): 3c8cfdf

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.12 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43565a0d60c6e516a0886bd0cf3d21e23db30356a9adb4b7deb134861930785c
3
+ size 108106
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2f35224160>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f2f3521c780>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 500000,
45
+ "_total_timesteps": 500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676159583829078106,
50
+ "learning_rate": 0.0002,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5z2AP1PVKL/GTta/NGZjPx5f0z4MrMM/mIexPxIlgz/v058/3xBmP2kztj/4aqQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]]",
60
+ "desired_goal": "[[ 1.0018891 -0.65950507 -1.674279 ]\n [ 0.88827825 0.41283506 1.528688 ]\n [ 1.3869505 1.0245688 1.2486552 ]\n [ 0.89869493 1.4234439 1.2845144 ]]",
61
+ "observation": "[[ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwhsOPtGSmr1Lo/Q9J78TPjbZiL0v4Fc9RoMCvTWj073dg/E9+huBve2AiD2LppY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.13877776 -0.07547534 0.11945208]\n [ 0.14428388 -0.06682055 0.05270403]\n [-0.03186347 -0.10333864 0.11792729]\n [-0.06304164 0.06665216 0.29423937]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvUOt0OD9L+UhpRSlIwBbJRLMowBdJRHQJY6Z9mYjSp1fZQoaAZoCWgPQwh/pIgMq7j1v5SGlFKUaBVLMmgWR0CWOeqTKT0QdX2UKGgGaAloD0MIgeuKGeGt97+UhpRSlGgVSzJoFkdAljloigTRIHV9lChoBmgJaA9DCLtemiLAqfy/lIaUUpRoFUsyaBZHQJY46D0163R1fZQoaAZoCWgPQwhR2bCmsmjzv5SGlFKUaBVLMmgWR0CWPDeHSF4+dX2UKGgGaAloD0MIF2U2yCRj9L+UhpRSlGgVSzJoFkdAlju6naWX1XV9lChoBmgJaA9DCBBbejTVE/q/lIaUUpRoFUsyaBZHQJY7OQhfShJ1fZQoaAZoCWgPQwgexTnq6Dj3v5SGlFKUaBVLMmgWR0CWOrjFyaNNdX2UKGgGaAloD0MIGOsbmNzo+7+UhpRSlGgVSzJoFkdAlj4Tj/+85HV9lChoBmgJaA9DCN0/FqJDYPi/lIaUUpRoFUsyaBZHQJY9lppN9IB1fZQoaAZoCWgPQwhl4etrXSr2v5SGlFKUaBVLMmgWR0CWPRSIxgy/dX2UKGgGaAloD0MIZTbIJCNn9r+UhpRSlGgVSzJoFkdAljyUgr6LwXV9lChoBmgJaA9DCPVIg9vawva/lIaUUpRoFUsyaBZHQJZABSAH3UR1fZQoaAZoCWgPQwg83A4NixH4v5SGlFKUaBVLMmgWR0CWP4gdwNsndX2UKGgGaAloD0MI56ij42rk9r+UhpRSlGgVSzJoFkdAlj8F45cTrXV9lChoBmgJaA9DCMFz7+GS4/W/lIaUUpRoFUsyaBZHQJY+hdC3PRl1fZQoaAZoCWgPQwjMlqyKcFP1v5SGlFKUaBVLMmgWR0CWQdK8+RozdX2UKGgGaAloD0MI6+Oh725l9r+UhpRSlGgVSzJoFkdAlkFV2JSBLHV9lChoBmgJaA9DCA1Uxr/P+PO/lIaUUpRoFUsyaBZHQJZA0/oq0+l1fZQoaAZoCWgPQwjbb+1ESYj1v5SGlFKUaBVLMmgWR0CWQFP0I1LrdX2UKGgGaAloD0MIQQsJGF1e+b+UhpRSlGgVSzJoFkdAlkO8CxNZeXV9lChoBmgJaA9DCC51kNeDyfe/lIaUUpRoFUsyaBZHQJZDPuogmqp1fZQoaAZoCWgPQwjBrFCk+zn4v5SGlFKUaBVLMmgWR0CWQrzGxUvPdX2UKGgGaAloD0MIMsozL4cd/b+UhpRSlGgVSzJoFkdAlkI8zImw7nV9lChoBmgJaA9DCHbFjPD2IPq/lIaUUpRoFUsyaBZHQJZFh8eCCjF1fZQoaAZoCWgPQwh7Ss6JPfT2v5SGlFKUaBVLMmgWR0CWRQwSJ0nxdX2UKGgGaAloD0MIsBwhA3l287+UhpRSlGgVSzJoFkdAlkSK2OQyRHV9lChoBmgJaA9DCGWqYFRSp/m/lIaUUpRoFUsyaBZHQJZEDIMjNY91fZQoaAZoCWgPQwj51of1Rm34v5SGlFKUaBVLMmgWR0CWR3R4hUzbdX2UKGgGaAloD0MIrcH7qlzo+7+UhpRSlGgVSzJoFkdAlkb3meUY9HV9lChoBmgJaA9DCH79EBssnPi/lIaUUpRoFUsyaBZHQJZGdd+ocaR1fZQoaAZoCWgPQwhIGtzWFl7zv5SGlFKUaBVLMmgWR0CWRfbPyCnQdX2UKGgGaAloD0MI9Bq7RPWW9b+UhpRSlGgVSzJoFkdAlklposZpBXV9lChoBmgJaA9DCHP0+L1N//i/lIaUUpRoFUsyaBZHQJZI7MA3kxR1fZQoaAZoCWgPQwj3x3vVysTzv5SGlFKUaBVLMmgWR0CWSGrVOKwZdX2UKGgGaAloD0MI+wRQjCyZ+r+UhpRSlGgVSzJoFkdAlkfqSHM2WXV9lChoBmgJaA9DCMXHJ2Tn7fa/lIaUUpRoFUsyaBZHQJZLPwx33Yd1fZQoaAZoCWgPQwiXrmAb8WT0v5SGlFKUaBVLMmgWR0CWSsIN3GGVdX2UKGgGaAloD0MI8j/5u3cU+r+UhpRSlGgVSzJoFkdAlkpAgxJumHV9lChoBmgJaA9DCBYTm49rQ/a/lIaUUpRoFUsyaBZHQJZJwW0qpcZ1fZQoaAZoCWgPQwhLdJZZhCL6v5SGlFKUaBVLMmgWR0CWTmJ04iosdX2UKGgGaAloD0MI4PdvXpz497+UhpRSlGgVSzJoFkdAlk3mqHXVb3V9lChoBmgJaA9DCJWAmIQLOfq/lIaUUpRoFUsyaBZHQJZNZd1MdtF1fZQoaAZoCWgPQwj9L9eiBSj3v5SGlFKUaBVLMmgWR0CWTOcriEQHdX2UKGgGaAloD0MI/rloyHjU97+UhpRSlGgVSzJoFkdAllGQaJhvznV9lChoBmgJaA9DCMITev1J/PW/lIaUUpRoFUsyaBZHQJZRFO32EkB1fZQoaAZoCWgPQwgvaYzWUVX0v5SGlFKUaBVLMmgWR0CWUJTXrdFfdX2UKGgGaAloD0MIM8LbgxAQ9r+UhpRSlGgVSzJoFkdAllAXdKujh3V9lChoBmgJaA9DCCxhbYydMPi/lIaUUpRoFUsyaBZHQJZUoqCpWFN1fZQoaAZoCWgPQwgDCB9KtOT1v5SGlFKUaBVLMmgWR0CWVCe6qbSadX2UKGgGaAloD0MI8gwa+ic4+L+UhpRSlGgVSzJoFkdAllOnr2QGOnV9lChoBmgJaA9DCHUF24gnu/u/lIaUUpRoFUsyaBZHQJZTKLpA2Q51fZQoaAZoCWgPQwjY8sr1ttn0v5SGlFKUaBVLMmgWR0CWV8bC79Q5dX2UKGgGaAloD0MIaf8DrFV797+UhpRSlGgVSzJoFkdAlldLbQC0W3V9lChoBmgJaA9DCIDuy5ntKgDAlIaUUpRoFUsyaBZHQJZWy5f+jud1fZQoaAZoCWgPQwhTCOQSR576v5SGlFKUaBVLMmgWR0CWVk5uZThpdX2UKGgGaAloD0MIAYdQpWaP9L+UhpRSlGgVSzJoFkdAllskVzp5eXV9lChoBmgJaA9DCAZLdQEvs/q/lIaUUpRoFUsyaBZHQJZaqM98qnZ1fZQoaAZoCWgPQwigxr35DVP5v5SGlFKUaBVLMmgWR0CWWihCMPz4dX2UKGgGaAloD0MIO1J95xdl9r+UhpRSlGgVSzJoFkdAllmpiNKh+XV9lChoBmgJaA9DCNUFvMywEfq/lIaUUpRoFUsyaBZHQJZeTwgDA8B1fZQoaAZoCWgPQwg+sOO/QND4v5SGlFKUaBVLMmgWR0CWXdQ6ZH/cdX2UKGgGaAloD0MIlpf8T/7u9r+UhpRSlGgVSzJoFkdAll1TwhGH6HV9lChoBmgJaA9DCJo+O+C6IvS/lIaUUpRoFUsyaBZHQJZc1ZHNHH51fZQoaAZoCWgPQwhI/mDguff0v5SGlFKUaBVLMmgWR0CWYaf29L6DdX2UKGgGaAloD0MIInGPpQ9d9b+UhpRSlGgVSzJoFkdAlmEspb2US3V9lChoBmgJaA9DCAItXcE2Yva/lIaUUpRoFUsyaBZHQJZgq9XcQAd1fZQoaAZoCWgPQwikU1c+y3P6v5SGlFKUaBVLMmgWR0CWYC2vStvGdX2UKGgGaAloD0MIjEtV2uIa/b+UhpRSlGgVSzJoFkdAlmPqyKNyYHV9lChoBmgJaA9DCCBB8WPMnfW/lIaUUpRoFUsyaBZHQJZjbcuanaZ1fZQoaAZoCWgPQwgPXru04fD7v5SGlFKUaBVLMmgWR0CWYuuc+aBqdX2UKGgGaAloD0MIMzFdiNXf8r+UhpRSlGgVSzJoFkdAlmJrQTmGNHV9lChoBmgJaA9DCKcExCRcSPa/lIaUUpRoFUsyaBZHQJZlx5Pdl/Z1fZQoaAZoCWgPQwiG4o43+S31v5SGlFKUaBVLMmgWR0CWZUqbBoEkdX2UKGgGaAloD0MIYqHWNO+4+b+UhpRSlGgVSzJoFkdAlmTIWP91l3V9lChoBmgJaA9DCGg9fJkoQve/lIaUUpRoFUsyaBZHQJZkR/LDAJt1fZQoaAZoCWgPQwj93NCUnf75v5SGlFKUaBVLMmgWR0CWZ5JrLyMDdX2UKGgGaAloD0MI2NR5VPzf9b+UhpRSlGgVSzJoFkdAlmcVawD/2nV9lChoBmgJaA9DCFhZ2xSPi/W/lIaUUpRoFUsyaBZHQJZmlGBnSOR1fZQoaAZoCWgPQwi0OGOYE3T3v5SGlFKUaBVLMmgWR0CWZhRmseXBdX2UKGgGaAloD0MIpG38icpG9b+UhpRSlGgVSzJoFkdAlml8jeKsMnV9lChoBmgJaA9DCK29T1WhAfq/lIaUUpRoFUsyaBZHQJZo/238XN11fZQoaAZoCWgPQwj5o6gz91D4v5SGlFKUaBVLMmgWR0CWaH0KZ2IPdX2UKGgGaAloD0MI8PyiBP1F+b+UhpRSlGgVSzJoFkdAlmf9DIBBA3V9lChoBmgJaA9DCDSAt0CC4vi/lIaUUpRoFUsyaBZHQJZrVEd/8VJ1fZQoaAZoCWgPQwiYF2Afnbr5v5SGlFKUaBVLMmgWR0CWateAuqWDdX2UKGgGaAloD0MIhey8jc1O87+UhpRSlGgVSzJoFkdAlmpVchTwUnV9lChoBmgJaA9DCLhc/dgk//a/lIaUUpRoFUsyaBZHQJZp1TdcjaB1fZQoaAZoCWgPQwiatKm6R/b2v5SGlFKUaBVLMmgWR0CWbScXFcY7dX2UKGgGaAloD0MIZ0Rpb/DF/b+UhpRSlGgVSzJoFkdAlmyqK1og3nV9lChoBmgJaA9DCAdF8wAWefi/lIaUUpRoFUsyaBZHQJZsKDZlFtt1fZQoaAZoCWgPQwggJ0wYzcr3v5SGlFKUaBVLMmgWR0CWa6fR/mT1dX2UKGgGaAloD0MIVtRgGoaP+r+UhpRSlGgVSzJoFkdAlm8NbkfcOHV9lChoBmgJaA9DCB8RUyKJXvS/lIaUUpRoFUsyaBZHQJZukKNQ0oB1fZQoaAZoCWgPQwhlcmpnmNr4v5SGlFKUaBVLMmgWR0CWbg7ZFocrdX2UKGgGaAloD0MIKnReY5co+7+UhpRSlGgVSzJoFkdAlm2OuvECNnV9lChoBmgJaA9DCDViZp/HqPa/lIaUUpRoFUsyaBZHQJZw+SMcZLt1fZQoaAZoCWgPQwiYNbHAV/T2v5SGlFKUaBVLMmgWR0CWcH0J4SpSdX2UKGgGaAloD0MIqWvtfapK+L+UhpRSlGgVSzJoFkdAlm/6/VRUFXV9lChoBmgJaA9DCFIQPL69q/i/lIaUUpRoFUsyaBZHQJZvevGIbfh1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 12500,
87
+ "n_steps": 10,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e41918cb82e202a030c8d92b23d41d8cbd0ab12bbf2e94844da7c58c40886dd
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30f93668290c3b730ba902662c172f148c19d5b24177a35cb493221f6dbf295a
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2f35224160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2f3521c780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676159583829078106, "learning_rate": 0.0002, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5z2AP1PVKL/GTta/NGZjPx5f0z4MrMM/mIexPxIlgz/v058/3xBmP2kztj/4aqQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]]", "desired_goal": "[[ 1.0018891 -0.65950507 -1.674279 ]\n [ 0.88827825 0.41283506 1.528688 ]\n [ 1.3869505 1.0245688 1.2486552 ]\n [ 0.89869493 1.4234439 1.2845144 ]]", "observation": "[[ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwhsOPtGSmr1Lo/Q9J78TPjbZiL0v4Fc9RoMCvTWj073dg/E9+huBve2AiD2LppY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13877776 -0.07547534 0.11945208]\n [ 0.14428388 -0.06682055 0.05270403]\n [-0.03186347 -0.10333864 0.11792729]\n [-0.06304164 0.06665216 0.29423937]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvUOt0OD9L+UhpRSlIwBbJRLMowBdJRHQJY6Z9mYjSp1fZQoaAZoCWgPQwh/pIgMq7j1v5SGlFKUaBVLMmgWR0CWOeqTKT0QdX2UKGgGaAloD0MIgeuKGeGt97+UhpRSlGgVSzJoFkdAljloigTRIHV9lChoBmgJaA9DCLtemiLAqfy/lIaUUpRoFUsyaBZHQJY46D0163R1fZQoaAZoCWgPQwhR2bCmsmjzv5SGlFKUaBVLMmgWR0CWPDeHSF4+dX2UKGgGaAloD0MIF2U2yCRj9L+UhpRSlGgVSzJoFkdAlju6naWX1XV9lChoBmgJaA9DCBBbejTVE/q/lIaUUpRoFUsyaBZHQJY7OQhfShJ1fZQoaAZoCWgPQwgexTnq6Dj3v5SGlFKUaBVLMmgWR0CWOrjFyaNNdX2UKGgGaAloD0MIGOsbmNzo+7+UhpRSlGgVSzJoFkdAlj4Tj/+85HV9lChoBmgJaA9DCN0/FqJDYPi/lIaUUpRoFUsyaBZHQJY9lppN9IB1fZQoaAZoCWgPQwhl4etrXSr2v5SGlFKUaBVLMmgWR0CWPRSIxgy/dX2UKGgGaAloD0MIZTbIJCNn9r+UhpRSlGgVSzJoFkdAljyUgr6LwXV9lChoBmgJaA9DCPVIg9vawva/lIaUUpRoFUsyaBZHQJZABSAH3UR1fZQoaAZoCWgPQwg83A4NixH4v5SGlFKUaBVLMmgWR0CWP4gdwNsndX2UKGgGaAloD0MI56ij42rk9r+UhpRSlGgVSzJoFkdAlj8F45cTrXV9lChoBmgJaA9DCMFz7+GS4/W/lIaUUpRoFUsyaBZHQJY+hdC3PRl1fZQoaAZoCWgPQwjMlqyKcFP1v5SGlFKUaBVLMmgWR0CWQdK8+RozdX2UKGgGaAloD0MI6+Oh725l9r+UhpRSlGgVSzJoFkdAlkFV2JSBLHV9lChoBmgJaA9DCA1Uxr/P+PO/lIaUUpRoFUsyaBZHQJZA0/oq0+l1fZQoaAZoCWgPQwjbb+1ESYj1v5SGlFKUaBVLMmgWR0CWQFP0I1LrdX2UKGgGaAloD0MIQQsJGF1e+b+UhpRSlGgVSzJoFkdAlkO8CxNZeXV9lChoBmgJaA9DCC51kNeDyfe/lIaUUpRoFUsyaBZHQJZDPuogmqp1fZQoaAZoCWgPQwjBrFCk+zn4v5SGlFKUaBVLMmgWR0CWQrzGxUvPdX2UKGgGaAloD0MIMsozL4cd/b+UhpRSlGgVSzJoFkdAlkI8zImw7nV9lChoBmgJaA9DCHbFjPD2IPq/lIaUUpRoFUsyaBZHQJZFh8eCCjF1fZQoaAZoCWgPQwh7Ss6JPfT2v5SGlFKUaBVLMmgWR0CWRQwSJ0nxdX2UKGgGaAloD0MIsBwhA3l287+UhpRSlGgVSzJoFkdAlkSK2OQyRHV9lChoBmgJaA9DCGWqYFRSp/m/lIaUUpRoFUsyaBZHQJZEDIMjNY91fZQoaAZoCWgPQwj51of1Rm34v5SGlFKUaBVLMmgWR0CWR3R4hUzbdX2UKGgGaAloD0MIrcH7qlzo+7+UhpRSlGgVSzJoFkdAlkb3meUY9HV9lChoBmgJaA9DCH79EBssnPi/lIaUUpRoFUsyaBZHQJZGdd+ocaR1fZQoaAZoCWgPQwhIGtzWFl7zv5SGlFKUaBVLMmgWR0CWRfbPyCnQdX2UKGgGaAloD0MI9Bq7RPWW9b+UhpRSlGgVSzJoFkdAlklposZpBXV9lChoBmgJaA9DCHP0+L1N//i/lIaUUpRoFUsyaBZHQJZI7MA3kxR1fZQoaAZoCWgPQwj3x3vVysTzv5SGlFKUaBVLMmgWR0CWSGrVOKwZdX2UKGgGaAloD0MI+wRQjCyZ+r+UhpRSlGgVSzJoFkdAlkfqSHM2WXV9lChoBmgJaA9DCMXHJ2Tn7fa/lIaUUpRoFUsyaBZHQJZLPwx33Yd1fZQoaAZoCWgPQwiXrmAb8WT0v5SGlFKUaBVLMmgWR0CWSsIN3GGVdX2UKGgGaAloD0MI8j/5u3cU+r+UhpRSlGgVSzJoFkdAlkpAgxJumHV9lChoBmgJaA9DCBYTm49rQ/a/lIaUUpRoFUsyaBZHQJZJwW0qpcZ1fZQoaAZoCWgPQwhLdJZZhCL6v5SGlFKUaBVLMmgWR0CWTmJ04iosdX2UKGgGaAloD0MI4PdvXpz497+UhpRSlGgVSzJoFkdAlk3mqHXVb3V9lChoBmgJaA9DCJWAmIQLOfq/lIaUUpRoFUsyaBZHQJZNZd1MdtF1fZQoaAZoCWgPQwj9L9eiBSj3v5SGlFKUaBVLMmgWR0CWTOcriEQHdX2UKGgGaAloD0MI/rloyHjU97+UhpRSlGgVSzJoFkdAllGQaJhvznV9lChoBmgJaA9DCMITev1J/PW/lIaUUpRoFUsyaBZHQJZRFO32EkB1fZQoaAZoCWgPQwgvaYzWUVX0v5SGlFKUaBVLMmgWR0CWUJTXrdFfdX2UKGgGaAloD0MIM8LbgxAQ9r+UhpRSlGgVSzJoFkdAllAXdKujh3V9lChoBmgJaA9DCCxhbYydMPi/lIaUUpRoFUsyaBZHQJZUoqCpWFN1fZQoaAZoCWgPQwgDCB9KtOT1v5SGlFKUaBVLMmgWR0CWVCe6qbSadX2UKGgGaAloD0MI8gwa+ic4+L+UhpRSlGgVSzJoFkdAllOnr2QGOnV9lChoBmgJaA9DCHUF24gnu/u/lIaUUpRoFUsyaBZHQJZTKLpA2Q51fZQoaAZoCWgPQwjY8sr1ttn0v5SGlFKUaBVLMmgWR0CWV8bC79Q5dX2UKGgGaAloD0MIaf8DrFV797+UhpRSlGgVSzJoFkdAlldLbQC0W3V9lChoBmgJaA9DCIDuy5ntKgDAlIaUUpRoFUsyaBZHQJZWy5f+jud1fZQoaAZoCWgPQwhTCOQSR576v5SGlFKUaBVLMmgWR0CWVk5uZThpdX2UKGgGaAloD0MIAYdQpWaP9L+UhpRSlGgVSzJoFkdAllskVzp5eXV9lChoBmgJaA9DCAZLdQEvs/q/lIaUUpRoFUsyaBZHQJZaqM98qnZ1fZQoaAZoCWgPQwigxr35DVP5v5SGlFKUaBVLMmgWR0CWWihCMPz4dX2UKGgGaAloD0MIO1J95xdl9r+UhpRSlGgVSzJoFkdAllmpiNKh+XV9lChoBmgJaA9DCNUFvMywEfq/lIaUUpRoFUsyaBZHQJZeTwgDA8B1fZQoaAZoCWgPQwg+sOO/QND4v5SGlFKUaBVLMmgWR0CWXdQ6ZH/cdX2UKGgGaAloD0MIlpf8T/7u9r+UhpRSlGgVSzJoFkdAll1TwhGH6HV9lChoBmgJaA9DCJo+O+C6IvS/lIaUUpRoFUsyaBZHQJZc1ZHNHH51fZQoaAZoCWgPQwhI/mDguff0v5SGlFKUaBVLMmgWR0CWYaf29L6DdX2UKGgGaAloD0MIInGPpQ9d9b+UhpRSlGgVSzJoFkdAlmEspb2US3V9lChoBmgJaA9DCAItXcE2Yva/lIaUUpRoFUsyaBZHQJZgq9XcQAd1fZQoaAZoCWgPQwikU1c+y3P6v5SGlFKUaBVLMmgWR0CWYC2vStvGdX2UKGgGaAloD0MIjEtV2uIa/b+UhpRSlGgVSzJoFkdAlmPqyKNyYHV9lChoBmgJaA9DCCBB8WPMnfW/lIaUUpRoFUsyaBZHQJZjbcuanaZ1fZQoaAZoCWgPQwgPXru04fD7v5SGlFKUaBVLMmgWR0CWYuuc+aBqdX2UKGgGaAloD0MIMzFdiNXf8r+UhpRSlGgVSzJoFkdAlmJrQTmGNHV9lChoBmgJaA9DCKcExCRcSPa/lIaUUpRoFUsyaBZHQJZlx5Pdl/Z1fZQoaAZoCWgPQwiG4o43+S31v5SGlFKUaBVLMmgWR0CWZUqbBoEkdX2UKGgGaAloD0MIYqHWNO+4+b+UhpRSlGgVSzJoFkdAlmTIWP91l3V9lChoBmgJaA9DCGg9fJkoQve/lIaUUpRoFUsyaBZHQJZkR/LDAJt1fZQoaAZoCWgPQwj93NCUnf75v5SGlFKUaBVLMmgWR0CWZ5JrLyMDdX2UKGgGaAloD0MI2NR5VPzf9b+UhpRSlGgVSzJoFkdAlmcVawD/2nV9lChoBmgJaA9DCFhZ2xSPi/W/lIaUUpRoFUsyaBZHQJZmlGBnSOR1fZQoaAZoCWgPQwi0OGOYE3T3v5SGlFKUaBVLMmgWR0CWZhRmseXBdX2UKGgGaAloD0MIpG38icpG9b+UhpRSlGgVSzJoFkdAlml8jeKsMnV9lChoBmgJaA9DCK29T1WhAfq/lIaUUpRoFUsyaBZHQJZo/238XN11fZQoaAZoCWgPQwj5o6gz91D4v5SGlFKUaBVLMmgWR0CWaH0KZ2IPdX2UKGgGaAloD0MI8PyiBP1F+b+UhpRSlGgVSzJoFkdAlmf9DIBBA3V9lChoBmgJaA9DCDSAt0CC4vi/lIaUUpRoFUsyaBZHQJZrVEd/8VJ1fZQoaAZoCWgPQwiYF2Afnbr5v5SGlFKUaBVLMmgWR0CWateAuqWDdX2UKGgGaAloD0MIhey8jc1O87+UhpRSlGgVSzJoFkdAlmpVchTwUnV9lChoBmgJaA9DCLhc/dgk//a/lIaUUpRoFUsyaBZHQJZp1TdcjaB1fZQoaAZoCWgPQwiatKm6R/b2v5SGlFKUaBVLMmgWR0CWbScXFcY7dX2UKGgGaAloD0MIZ0Rpb/DF/b+UhpRSlGgVSzJoFkdAlmyqK1og3nV9lChoBmgJaA9DCAdF8wAWefi/lIaUUpRoFUsyaBZHQJZsKDZlFtt1fZQoaAZoCWgPQwggJ0wYzcr3v5SGlFKUaBVLMmgWR0CWa6fR/mT1dX2UKGgGaAloD0MIVtRgGoaP+r+UhpRSlGgVSzJoFkdAlm8NbkfcOHV9lChoBmgJaA9DCB8RUyKJXvS/lIaUUpRoFUsyaBZHQJZukKNQ0oB1fZQoaAZoCWgPQwhlcmpnmNr4v5SGlFKUaBVLMmgWR0CWbg7ZFocrdX2UKGgGaAloD0MIKnReY5co+7+UhpRSlGgVSzJoFkdAlm2OuvECNnV9lChoBmgJaA9DCDViZp/HqPa/lIaUUpRoFUsyaBZHQJZw+SMcZLt1fZQoaAZoCWgPQwiYNbHAV/T2v5SGlFKUaBVLMmgWR0CWcH0J4SpSdX2UKGgGaAloD0MIqWvtfapK+L+UhpRSlGgVSzJoFkdAlm/6/VRUFXV9lChoBmgJaA9DCFIQPL69q/i/lIaUUpRoFUsyaBZHQJZvevGIbfh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 10, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (777 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.1247941021574661, "std_reward": 0.11852373209584698, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-12T00:17:04.921960"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ffd7c7f7c964de35192b2ffdaa40bac8f58189b07f95d95051e3e55bf8ebd07
3
+ size 3056