from typing import Dict, List, Any from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution import torch import base64 import logging import numpy as np from PIL import Image from io import BytesIO logger = logging.getLogger() logger.setLevel(logging.DEBUG) # check for GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path=""): # load the model self.processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64") Swin2SRModel._no_split_modules = ["Swin2SREmbeddings", "Swin2SRStage"] Swin2SRForImageSuperResolution._no_split_modules = ["Swin2SREmbeddings", "Swin2SRStage"] model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64", device_map="auto") logger.info(model.hf_device_map) model.hf_device_map["swin2sr.conv_after_body"] = model.hf_device_map["swin2sr.embeddings"] model.hf_device_map["upsample"] = model.hf_device_map["swin2sr.embeddings"] self.model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64", device_map=model.hf_device_map) def __call__(self, data: Any): """ Args: data (:obj:): binary image data to be labeled Return: A :obj:`string`:. Base64 encoded image string """ image = data["inputs"] inputs = self.processor(image, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy() output = np.moveaxis(output, source=0, destination=-1) output = (output * 255.0).round().astype(np.uint8) img = Image.fromarray(output) buffered = BytesIO() img.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()) return img_str.decode()