fashxp's picture
allow usage of multiple GPUs
97505a5 verified
raw
history blame
2.02 kB
from typing import Dict, List, Any
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
import torch
import base64
import logging
import numpy as np
from PIL import Image
from io import BytesIO
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
# check for GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EndpointHandler:
def __init__(self, path=""):
# load the model
self.processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
Swin2SRModel._no_split_modules = ["Swin2SREmbeddings", "Swin2SRStage"]
Swin2SRForImageSuperResolution._no_split_modules = ["Swin2SREmbeddings", "Swin2SRStage"]
model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64", device_map="auto")
logger.info(model.hf_device_map)
model.hf_device_map["swin2sr.conv_after_body"] = model.hf_device_map["swin2sr.embeddings"]
model.hf_device_map["upsample"] = model.hf_device_map["swin2sr.embeddings"]
self.model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64", device_map=model.hf_device_map)
def __call__(self, data: Any):
"""
Args:
data (:obj:):
binary image data to be labeled
Return:
A :obj:`string`:. Base64 encoded image string
"""
image = data["inputs"]
inputs = self.processor(image, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8)
img = Image.fromarray(output)
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode()