pietroluongo commited on
Commit
5e976b9
·
1 Parent(s): 30d71f3

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.61 +/- 22.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001B0B385CAE0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001B0B385CB80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001B0B385CC20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001B0B385CCC0>", "_build": "<function ActorCriticPolicy._build at 0x000001B0B385CD60>", "forward": "<function ActorCriticPolicy.forward at 0x000001B0B385CE00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001B0B385CEA0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001B0B385CF40>", "_predict": "<function ActorCriticPolicy._predict at 0x000001B0B385CFE0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001B0B385D080>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001B0B385D120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001B0B385D1C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001B0B384E8C0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694553759238390000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2Tfr0U3oO6UDLXuiMVBrZNdWc7qAH7OQAAgD8AAIA/ZkaqOnENabmRCLe6icinsbDRaTqLoNk5AACAPwAAgD+aQLu94XSdujoVDjrJpyE1S0SuOlhUI7kAAIA/AACAPzPqJr0U9I66nRv3Oq8HtTdfocU5O9aAtwAAgD8AAIA/mkHlvClgaLo8kJ+6szSctdmWZ7ptI7s5AACAPwAAgD8A2u884WaWuteUN7jLnymzbXj5urtLVDcAAIA/AACAPzOFhr3DuR66OVcuvEMRVTWrsAm5nFrDtAAAAAAAAIA/AGOvPZStTj51YDG+fOSTvgJUj70N0aq9AAAAAAAAAACafby9VUHOPu6FCj7nkV6+lt8BPUWxZT0AAAAAAAAAAJqTQT3Pyk28Y08FPCGtLTz1kLY9GUUSvQAAgD8AAIA/gL18vXvKjbrCsk+7l34xtsZ6A7ldCXE6AAAAAAAAgD/N/OY6SFOFuvARpje37KEytIyFOoqJwbYAAIA/AACAP5qMhzx7Bpq6jm57uPeYgbMAPpM6NkGRNwAAgD8AAIA/s7JYvXvMgrq+cHa6E+iAtc/l9Druno85AACAPwAAgD9mqoU71iZ3PcrHIzz1W0++KBkpPNYt4zwAAAAAAAAAAPOZz708D8k+zoi+vRJwj76BCiK9QYoQvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGvZIo/iYLOMAWyUTVkBjAF0lEdAgqVnIyTINnV9lChoBkdAYdawwj+rEWgHTegDaAhHQIKwEzdk8Rt1fZQoaAZHQGYTWpyZKFtoB03oA2gIR0CCt+4tpVS5dX2UKGgGR0BlnYYixFAnaAdN6ANoCEdAgroNHhCMP3V9lChoBkdAYSCIt16mf2gHTegDaAhHQIK7SYzBRAN1fZQoaAZHQGbFAO8TSLJoB03oA2gIR0CCvPGLk0aZdX2UKGgGR0Bk3XMr3CbdaAdN6ANoCEdAgr+HJDE3sHV9lChoBkdAY4V3BYV6/2gHTegDaAhHQILRx1Ng0CR1fZQoaAZHQGLrgL7XQMRoB03oA2gIR0CC04enQ6ZIdX2UKGgGR0BlO8m+j/MoaAdN6ANoCEdAgtPbnoxHoXV9lChoBkdAaBYY3Ns3ymgHTegDaAhHQILs3CZWq951fZQoaAZHQGQMWV3Ux21oB03oA2gIR0CC7+Q04zacdX2UKGgGR0BdjbfpD/lyaAdN6ANoCEdAgvSfxc3VC3V9lChoBkdAXO0yGi5/b2gHTegDaAhHQIL2En7YTTR1fZQoaAZHQGKNPugHu7ZoB03oA2gIR0CC98bDuSfUdX2UKGgGR0Bm0EgSvkimaAdN6ANoCEdAgvi3bVSXMXV9lChoBkdAXi/2zv7WNGgHTegDaAhHQIL6I9gWrOt1fZQoaAZHQGB+JAdGRV9oB03oA2gIR0CDBTtv4ubrdX2UKGgGR0BkYXNmlImPaAdN6ANoCEdAgw46kAPuonV9lChoBkdAZPOEHMUypWgHTegDaAhHQIMQVkWhysF1fZQoaAZHQGCuCtq59VpoB03oA2gIR0CDEeOktVaPdX2UKGgGR0BkDyHbh3qzaAdN6ANoCEdAgxPEKVpsXXV9lChoBkdAYSHR4yGi6GgHTegDaAhHQIMWp5LRKHx1fZQoaAZHQG97DxTbWVhoB03oAWgIR0CDF7TodMkAdX2UKGgGR0Akaml67dzoaAdL3mgIR0CDIFucc2itdX2UKGgGR0Bnb8GHHmzTaAdN6ANoCEdAgyk1/+bVjXV9lChoBkdAY7MjY7JXAGgHTegDaAhHQIMrH4O+ZgJ1fZQoaAZHQGZE8tXgccVoB03oA2gIR0CDK3aW5YozdX2UKGgGR0Bl/x9d/rjYaAdN6ANoCEdAgywOJDVpbnV9lChoBkdAaJMVZ9uxbGgHTegDaAhHQINKKr3j+711fZQoaAZHQGEEnIZIg/1oB03oA2gIR0CDT1stTUAldX2UKGgGR0BmvT2+PBBSaAdN6ANoCEdAg1EDK5kK/nV9lChoBkdAZy8/W1+iJ2gHTegDaAhHQINUEMRYigV1fZQoaAZHQGK61SwW30BoB03oA2gIR0CDVYsMAmzCdX2UKGgGR0BibDd30PH1aAdN6ANoCEdAg2EdFvybx3V9lChoBkdAYlZG4I8hcWgHTegDaAhHQINqHB3zMA51fZQoaAZHQGF+3Upd8iRoB03oA2gIR0CDbCBI4EOidX2UKGgGR0BlTRiZv1lHaAdN6ANoCEdAg28lpXZGrnV9lChoBkdAYmjkjopx3mgHTegDaAhHQINyAOOKfnR1fZQoaAZHQGDZB2fTTfBoB03oA2gIR0CDcwlIEr5JdX2UKGgGR0BpA7yauwHJaAdN6ANoCEdAg3tdgOSW7nV9lChoBkdAaGRH6uW8iGgHTegDaAhHQIODvc32mHh1fZQoaAZHQF2eEc81XNloB03oA2gIR0CDhYBnzxwydX2UKGgGR0Bk2RlcyFfzaAdN6ANoCEdAg4XQSJ0nxHV9lChoBkdAY58Q7tAs1GgHTegDaAhHQIOGVGViWmh1fZQoaAZHQGaujCpFTehoB03oA2gIR0CDo/qfvnbJdX2UKGgGR0BmSvFWGRFJaAdN6ANoCEdAg6jlXzUZvXV9lChoBkdAYpitxMnJDGgHTegDaAhHQIOqiUC7sfJ1fZQoaAZHQGFO8ox59mZoB03oA2gIR0CDra72criEdX2UKGgGR0Bmtxhz/6wdaAdN6ANoCEdAg69Lyc0+DHV9lChoBkdAX6nc45tFa2gHTegDaAhHQIO70PDpC8h1fZQoaAZHQGZPbHyVfNRoB03oA2gIR0CDxNO32EkCdX2UKGgGR0Bjn0YMvyskaAdN6ANoCEdAg8bkPlMh5nV9lChoBkdAZ8065oXbd2gHTegDaAhHQIPKWRHPNV11fZQoaAZHQGG2hzFMqSZoB03oA2gIR0CDzdINmUW3dX2UKGgGR0BgT3AAQxvfaAdN6ANoCEdAg88Rlg+hXnV9lChoBkdASzW8yvcJt2gHS9BoCEdAg9aBz3h4uHV9lChoBkdAYm8fYBeXzGgHTegDaAhHQIPYxuXNTtN1fZQoaAZHQGLIVKXfIjpoB03oA2gIR0CD4elY2bXpdX2UKGgGR0BiMqdvsJIEaAdN6ANoCEdAg+OXenAIp3V9lChoBkdAYwDCZWq95GgHTegDaAhHQIPj6WZ7Xxx1fZQoaAZHQGV0fnW8RL9oB03oA2gIR0CD5GVdHDrJdX2UKGgGR0Bk4MW69TP0aAdN6ANoCEdAg+e0m2LHdXV9lChoBkdAZj2oo/iYLWgHTegDaAhHQIQF0MXrMTx1fZQoaAZHQGYpZM10knloB03oA2gIR0CEB0izLOiWdX2UKGgGR0BntUtPHktFaAdN6ANoCEdAhAo1d5Y5k3V9lChoBkdADKeumrKeTWgHTQQBaAhHQIQLV0V8CxN1fZQoaAZHQGILEHt4RmNoB03oA2gIR0CEC764UeuFdX2UKGgGR0BhrKP8yeqaaAdN6ANoCEdAhBcCt7rs0HV9lChoBkdAcu0TwDvE0mgHTa4BaAhHQIQZ7EtNBWx1fZQoaAZHQGFjbTlT3qRoB03oA2gIR0CEHwxPfsNUdX2UKGgGR0Blju/etSydaAdN6ANoCEdAhCPX6Q/5cnV9lChoBkdAXmXzSThYNmgHTegDaAhHQIQmiXBxgiN1fZQoaAZHQGYg0K7ZnL9oB03oA2gIR0CEJ5nezlcRdX2UKGgGR0Bh/zVvuPV/aAdN6ANoCEdAhC47tAs053V9lChoBkdAY76w1R+BpmgHTegDaAhHQIQweDSPU8V1fZQoaAZHQHCucTewcHZoB021AWgIR0CEN1myxA0LdX2UKGgGR0BlN5ZuAI6baAdN6ANoCEdAhDoH4O+ZgHV9lChoBkdAYkUBe5WilGgHTegDaAhHQIQ74KlYU351fZQoaAZHQFzHlGPPszFoB03oA2gIR0CEPN2cJ+lTdX2UKGgGR0BoT9Oj7ALzaAdN6ANoCEdAhGCa1TisGXV9lChoBkdAY5EIpH7P6mgHTegDaAhHQIRigD/2kBV1fZQoaAZHQGbqkbPyCnRoB03oA2gIR0CEZefQrtmddX2UKGgGR0BkZkpkPMB7aAdN6ANoCEdAhGdIH1OCXnV9lChoBkdAZp0ADq4YrWgHTegDaAhHQIRnwxgy/K11fZQoaAZHQHE2VDv3JxNoB001AmgIR0CEcTV4oqkNdX2UKGgGR0BkKmEkB0ZFaAdN6ANoCEdAhHQeAmReTnV9lChoBkdAcAewt8NQTGgHTRsDaAhHQIR2Hx2B8QZ1fZQoaAZHQGCuIRqXWvtoB03oA2gIR0CEe1Wp6yB1dX2UKGgGR0BjE3UKArhBaAdN6ANoCEdAhIBC8vmHQHV9lChoBkdAcPn4S6DoQmgHTZ0BaAhHQISAi619fC11fZQoaAZHQE35QF9roGJoB00GAWgIR0CEgcQGOdXldX2UKGgGR0Bihq9Zid8RaAdN6ANoCEdAhIPJPIn0CnV9lChoBkdAb5hUlRgqmWgHTcYBaAhHQISEBqwhW5p1fZQoaAZHQGS4qLS/j81oB03oA2gIR0CEiOuh9LHudX2UKGgGR0Btuk63iJfqaAdNhwNoCEdAhI5NHH3lCHV9lChoBkdARmW+mFaje2gHS81oCEdAhI5r1M/QjXV9lChoBkdAZe+jD8+A3GgHTegDaAhHQISPlucc2it1fZQoaAZHQGQ+iu2Zy+9oB03oA2gIR0CEkXxWDHwPdX2UKGgGR0Bjln9aUzKtaAdN6ANoCEdAhJL29L6DXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVogIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xwaWV0cm9sdW9uZ29cbWluaWNvbmRhM1xlbnZzXHJlbGVhcm5cTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVogIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xwaWV0cm9sdW9uZ29cbWluaWNvbmRhM1xlbnZzXHJlbGVhcm5cTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c38a4ad952b58e22504ce52078f218afb854062ad7ac774570e9724331219f13
3
+ size 146841
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x000001B0B385CAE0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001B0B385CB80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001B0B385CC20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001B0B385CCC0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x000001B0B385CD60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x000001B0B385CE00>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001B0B385CEA0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001B0B385CF40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x000001B0B385CFE0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001B0B385D080>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001B0B385D120>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001B0B385D1C0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x000001B0B384E8C0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694553759238390000,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2Tfr0U3oO6UDLXuiMVBrZNdWc7qAH7OQAAgD8AAIA/ZkaqOnENabmRCLe6icinsbDRaTqLoNk5AACAPwAAgD+aQLu94XSdujoVDjrJpyE1S0SuOlhUI7kAAIA/AACAPzPqJr0U9I66nRv3Oq8HtTdfocU5O9aAtwAAgD8AAIA/mkHlvClgaLo8kJ+6szSctdmWZ7ptI7s5AACAPwAAgD8A2u884WaWuteUN7jLnymzbXj5urtLVDcAAIA/AACAPzOFhr3DuR66OVcuvEMRVTWrsAm5nFrDtAAAAAAAAIA/AGOvPZStTj51YDG+fOSTvgJUj70N0aq9AAAAAAAAAACafby9VUHOPu6FCj7nkV6+lt8BPUWxZT0AAAAAAAAAAJqTQT3Pyk28Y08FPCGtLTz1kLY9GUUSvQAAgD8AAIA/gL18vXvKjbrCsk+7l34xtsZ6A7ldCXE6AAAAAAAAgD/N/OY6SFOFuvARpje37KEytIyFOoqJwbYAAIA/AACAP5qMhzx7Bpq6jm57uPeYgbMAPpM6NkGRNwAAgD8AAIA/s7JYvXvMgrq+cHa6E+iAtc/l9Druno85AACAPwAAgD9mqoU71iZ3PcrHIzz1W0++KBkpPNYt4zwAAAAAAAAAAPOZz708D8k+zoi+vRJwj76BCiK9QYoQvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGvZIo/iYLOMAWyUTVkBjAF0lEdAgqVnIyTINnV9lChoBkdAYdawwj+rEWgHTegDaAhHQIKwEzdk8Rt1fZQoaAZHQGYTWpyZKFtoB03oA2gIR0CCt+4tpVS5dX2UKGgGR0BlnYYixFAnaAdN6ANoCEdAgroNHhCMP3V9lChoBkdAYSCIt16mf2gHTegDaAhHQIK7SYzBRAN1fZQoaAZHQGbFAO8TSLJoB03oA2gIR0CCvPGLk0aZdX2UKGgGR0Bk3XMr3CbdaAdN6ANoCEdAgr+HJDE3sHV9lChoBkdAY4V3BYV6/2gHTegDaAhHQILRx1Ng0CR1fZQoaAZHQGLrgL7XQMRoB03oA2gIR0CC04enQ6ZIdX2UKGgGR0BlO8m+j/MoaAdN6ANoCEdAgtPbnoxHoXV9lChoBkdAaBYY3Ns3ymgHTegDaAhHQILs3CZWq951fZQoaAZHQGQMWV3Ux21oB03oA2gIR0CC7+Q04zacdX2UKGgGR0BdjbfpD/lyaAdN6ANoCEdAgvSfxc3VC3V9lChoBkdAXO0yGi5/b2gHTegDaAhHQIL2En7YTTR1fZQoaAZHQGKNPugHu7ZoB03oA2gIR0CC98bDuSfUdX2UKGgGR0Bm0EgSvkimaAdN6ANoCEdAgvi3bVSXMXV9lChoBkdAXi/2zv7WNGgHTegDaAhHQIL6I9gWrOt1fZQoaAZHQGB+JAdGRV9oB03oA2gIR0CDBTtv4ubrdX2UKGgGR0BkYXNmlImPaAdN6ANoCEdAgw46kAPuonV9lChoBkdAZPOEHMUypWgHTegDaAhHQIMQVkWhysF1fZQoaAZHQGCuCtq59VpoB03oA2gIR0CDEeOktVaPdX2UKGgGR0BkDyHbh3qzaAdN6ANoCEdAgxPEKVpsXXV9lChoBkdAYSHR4yGi6GgHTegDaAhHQIMWp5LRKHx1fZQoaAZHQG97DxTbWVhoB03oAWgIR0CDF7TodMkAdX2UKGgGR0Akaml67dzoaAdL3mgIR0CDIFucc2itdX2UKGgGR0Bnb8GHHmzTaAdN6ANoCEdAgyk1/+bVjXV9lChoBkdAY7MjY7JXAGgHTegDaAhHQIMrH4O+ZgJ1fZQoaAZHQGZE8tXgccVoB03oA2gIR0CDK3aW5YozdX2UKGgGR0Bl/x9d/rjYaAdN6ANoCEdAgywOJDVpbnV9lChoBkdAaJMVZ9uxbGgHTegDaAhHQINKKr3j+711fZQoaAZHQGEEnIZIg/1oB03oA2gIR0CDT1stTUAldX2UKGgGR0BmvT2+PBBSaAdN6ANoCEdAg1EDK5kK/nV9lChoBkdAZy8/W1+iJ2gHTegDaAhHQINUEMRYigV1fZQoaAZHQGK61SwW30BoB03oA2gIR0CDVYsMAmzCdX2UKGgGR0BibDd30PH1aAdN6ANoCEdAg2EdFvybx3V9lChoBkdAYlZG4I8hcWgHTegDaAhHQINqHB3zMA51fZQoaAZHQGF+3Upd8iRoB03oA2gIR0CDbCBI4EOidX2UKGgGR0BlTRiZv1lHaAdN6ANoCEdAg28lpXZGrnV9lChoBkdAYmjkjopx3mgHTegDaAhHQINyAOOKfnR1fZQoaAZHQGDZB2fTTfBoB03oA2gIR0CDcwlIEr5JdX2UKGgGR0BpA7yauwHJaAdN6ANoCEdAg3tdgOSW7nV9lChoBkdAaGRH6uW8iGgHTegDaAhHQIODvc32mHh1fZQoaAZHQF2eEc81XNloB03oA2gIR0CDhYBnzxwydX2UKGgGR0Bk2RlcyFfzaAdN6ANoCEdAg4XQSJ0nxHV9lChoBkdAY58Q7tAs1GgHTegDaAhHQIOGVGViWmh1fZQoaAZHQGaujCpFTehoB03oA2gIR0CDo/qfvnbJdX2UKGgGR0BmSvFWGRFJaAdN6ANoCEdAg6jlXzUZvXV9lChoBkdAYpitxMnJDGgHTegDaAhHQIOqiUC7sfJ1fZQoaAZHQGFO8ox59mZoB03oA2gIR0CDra72criEdX2UKGgGR0Bmtxhz/6wdaAdN6ANoCEdAg69Lyc0+DHV9lChoBkdAX6nc45tFa2gHTegDaAhHQIO70PDpC8h1fZQoaAZHQGZPbHyVfNRoB03oA2gIR0CDxNO32EkCdX2UKGgGR0Bjn0YMvyskaAdN6ANoCEdAg8bkPlMh5nV9lChoBkdAZ8065oXbd2gHTegDaAhHQIPKWRHPNV11fZQoaAZHQGG2hzFMqSZoB03oA2gIR0CDzdINmUW3dX2UKGgGR0BgT3AAQxvfaAdN6ANoCEdAg88Rlg+hXnV9lChoBkdASzW8yvcJt2gHS9BoCEdAg9aBz3h4uHV9lChoBkdAYm8fYBeXzGgHTegDaAhHQIPYxuXNTtN1fZQoaAZHQGLIVKXfIjpoB03oA2gIR0CD4elY2bXpdX2UKGgGR0BiMqdvsJIEaAdN6ANoCEdAg+OXenAIp3V9lChoBkdAYwDCZWq95GgHTegDaAhHQIPj6WZ7Xxx1fZQoaAZHQGV0fnW8RL9oB03oA2gIR0CD5GVdHDrJdX2UKGgGR0Bk4MW69TP0aAdN6ANoCEdAg+e0m2LHdXV9lChoBkdAZj2oo/iYLWgHTegDaAhHQIQF0MXrMTx1fZQoaAZHQGYpZM10knloB03oA2gIR0CEB0izLOiWdX2UKGgGR0BntUtPHktFaAdN6ANoCEdAhAo1d5Y5k3V9lChoBkdADKeumrKeTWgHTQQBaAhHQIQLV0V8CxN1fZQoaAZHQGILEHt4RmNoB03oA2gIR0CEC764UeuFdX2UKGgGR0BhrKP8yeqaaAdN6ANoCEdAhBcCt7rs0HV9lChoBkdAcu0TwDvE0mgHTa4BaAhHQIQZ7EtNBWx1fZQoaAZHQGFjbTlT3qRoB03oA2gIR0CEHwxPfsNUdX2UKGgGR0Blju/etSydaAdN6ANoCEdAhCPX6Q/5cnV9lChoBkdAXmXzSThYNmgHTegDaAhHQIQmiXBxgiN1fZQoaAZHQGYg0K7ZnL9oB03oA2gIR0CEJ5nezlcRdX2UKGgGR0Bh/zVvuPV/aAdN6ANoCEdAhC47tAs053V9lChoBkdAY76w1R+BpmgHTegDaAhHQIQweDSPU8V1fZQoaAZHQHCucTewcHZoB021AWgIR0CEN1myxA0LdX2UKGgGR0BlN5ZuAI6baAdN6ANoCEdAhDoH4O+ZgHV9lChoBkdAYkUBe5WilGgHTegDaAhHQIQ74KlYU351fZQoaAZHQFzHlGPPszFoB03oA2gIR0CEPN2cJ+lTdX2UKGgGR0BoT9Oj7ALzaAdN6ANoCEdAhGCa1TisGXV9lChoBkdAY5EIpH7P6mgHTegDaAhHQIRigD/2kBV1fZQoaAZHQGbqkbPyCnRoB03oA2gIR0CEZefQrtmddX2UKGgGR0BkZkpkPMB7aAdN6ANoCEdAhGdIH1OCXnV9lChoBkdAZp0ADq4YrWgHTegDaAhHQIRnwxgy/K11fZQoaAZHQHE2VDv3JxNoB001AmgIR0CEcTV4oqkNdX2UKGgGR0BkKmEkB0ZFaAdN6ANoCEdAhHQeAmReTnV9lChoBkdAcAewt8NQTGgHTRsDaAhHQIR2Hx2B8QZ1fZQoaAZHQGCuIRqXWvtoB03oA2gIR0CEe1Wp6yB1dX2UKGgGR0BjE3UKArhBaAdN6ANoCEdAhIBC8vmHQHV9lChoBkdAcPn4S6DoQmgHTZ0BaAhHQISAi619fC11fZQoaAZHQE35QF9roGJoB00GAWgIR0CEgcQGOdXldX2UKGgGR0Bihq9Zid8RaAdN6ANoCEdAhIPJPIn0CnV9lChoBkdAb5hUlRgqmWgHTcYBaAhHQISEBqwhW5p1fZQoaAZHQGS4qLS/j81oB03oA2gIR0CEiOuh9LHudX2UKGgGR0Btuk63iJfqaAdNhwNoCEdAhI5NHH3lCHV9lChoBkdARmW+mFaje2gHS81oCEdAhI5r1M/QjXV9lChoBkdAZe+jD8+A3GgHTegDaAhHQISPlucc2it1fZQoaAZHQGQ+iu2Zy+9oB03oA2gIR0CEkXxWDHwPdX2UKGgGR0Bjln9aUzKtaAdN6ANoCEdAhJL29L6DXnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "n_steps": 1024,
56
+ "gamma": 0.999,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 4,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVogIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xwaWV0cm9sdW9uZ29cbWluaWNvbmRhM1xlbnZzXHJlbGVhcm5cTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
81
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 16,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVogIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xwaWV0cm9sdW9uZ29cbWluaWNvbmRhM1xlbnZzXHJlbGVhcm5cTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160b8a32e172e5cdc28cbeadd7aa06b9923de9be4adc444f1a1477415f484a93
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07a3f4a89ccf62dcc2cb957c5109b98ee72d73ac6419a07f6bb50b270e0138ca
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.22621-SP0 10.0.22621
2
+ - Python: 3.11.4
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.6121483, "std_reward": 22.41793122735099, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-12T18:50:14.205378"}