pietroluongo commited on
Commit
e125fd1
·
1 Parent(s): 38bcea5

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 82.03 +/- 144.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga pietroluongo -f logs/
47
+ python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga pietroluongo -f logs/
53
+ python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo dqn --env LunarLander-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga pietroluongo
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 32),
66
+ ('buffer_size', 100000),
67
+ ('exploration_final_eps', 0.01),
68
+ ('exploration_fraction', 0.1),
69
+ ('frame_stack', 4),
70
+ ('gradient_steps', 1),
71
+ ('learning_rate', 0.0001),
72
+ ('learning_starts', 100000),
73
+ ('n_timesteps', 1000000.0),
74
+ ('optimize_memory_usage', False),
75
+ ('policy', 'MlpPolicy'),
76
+ ('target_update_interval', 1000),
77
+ ('train_freq', 4),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - dqn
4
+ - - conf_file
5
+ - .\dqn.yml
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - LunarLander-v2
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs/
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 813433946
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - logs
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - .\logs\dqn\LunarLander-v2_5\best_model.zip
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 32
4
+ - - buffer_size
5
+ - 100000
6
+ - - exploration_final_eps
7
+ - 0.01
8
+ - - exploration_fraction
9
+ - 0.1
10
+ - - frame_stack
11
+ - 4
12
+ - - gradient_steps
13
+ - 1
14
+ - - learning_rate
15
+ - 0.0001
16
+ - - learning_starts
17
+ - 100000
18
+ - - n_timesteps
19
+ - 1000000.0
20
+ - - optimize_memory_usage
21
+ - false
22
+ - - policy
23
+ - MlpPolicy
24
+ - - target_update_interval
25
+ - 1000
26
+ - - train_freq
27
+ - 4
dqn-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21ffcb877d1667707ffd525121bc6e94f61f6c27e012547478ff6fda063f019c
3
+ size 133205
dqn-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
dqn-LunarLander-v2/data ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x0000020049FD4860>",
9
+ "_build": "<function DQNPolicy._build at 0x0000020049FD4900>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x0000020049FD49A0>",
11
+ "forward": "<function DQNPolicy.forward at 0x0000020049FD4A40>",
12
+ "_predict": "<function DQNPolicy._predict at 0x0000020049FD4AE0>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x0000020049FD4B80>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x0000020049FD4C20>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x0000020049FCA300>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "num_timesteps": 1000000,
21
+ "_total_timesteps": 1000000,
22
+ "_num_timesteps_at_start": 0,
23
+ "seed": 0,
24
+ "action_noise": null,
25
+ "start_time": 1694576197350556300,
26
+ "learning_rate": {
27
+ ":type:": "<class 'function'>",
28
+ ":serialized:": "gAWVogIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xwaWV0cm9sdW9uZ29cbWluaWNvbmRhM1xlbnZzXHJlbGVhcm5cTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
29
+ },
30
+ "tensorboard_log": "logs\\LunarLander-v2",
31
+ "_last_obs": null,
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAO0SIj6PfxM++JFpvBqvZ73PRc89ll1QPQAAAAAAAAAAYBEiPgJREj67IH+7AAdTvRT81T1sPYY9AAAAAAAAAABzFSI+h5sRPqjPD7tJQf68KJndPZpFmD0AAAAAAAAAAFovIj7pShA+ZkQHPDY9ar1c6OA9RWAEPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSyCGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_episode_num": 2200,
41
+ "use_sde": false,
42
+ "sde_sample_freq": -1,
43
+ "_current_progress_remaining": 0.0,
44
+ "_stats_window_size": 100,
45
+ "ep_info_buffer": {
46
+ ":type:": "<class 'collections.deque'>",
47
+ ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHWnTriVB2SMAWyUTUwCjAF0lEdAiFcQY+B6KXV9lChoBkdAaCXJkoWpImgHTUcCaAhHQIha9AX2ugZ1fZQoaAZHwEG8AbyYoiNoB03oA2gIR0CIYanqmj0udX2UKGgGR8BK+N5t3wCsaAdN6ANoCEdAiGiaFmFrVXV9lChoBkfAOJVMh5gPVmgHTegDaAhHQIhwLZxrBTJ1fZQoaAZHwEUbREWqLjxoB00rAmgIR0CIdB1nuiN9dX2UKGgGR0BwuTY02tMgaAdN/wJoCEdAiHn02UB4lnV9lChoBkfAc5jcjJMg2mgHTQcBaAhHQIh7lrbg0j11fZQoaAZHwDUEHzH0btJoB03oA2gIR0CIgfFlTWGzdX2UKGgGR0A/nmJFb3XaaAdNKQFoCEdAiJTFFMIu5HV9lChoBkfAVRHe/Ho5gmgHTegDaAhHQIicTYbsF+x1fZQoaAZHQFgtHxSYPXloB02vA2gIR0CIojQN0/4ZdX2UKGgGR8A2hJo0ygwoaAdN6ANoCEdAiKjfd69kBnV9lChoBkfART2MuOCGvmgHTegDaAhHQIivzrC3w1B1fZQoaAZHwEta8nNPgvVoB03oA2gIR0CItqVX3g1ndX2UKGgGR0BsmVF4LThHaAdNcAFoCEdAiLkdRR/EwXV9lChoBkdAYm4KMNtqH2gHTcUCaAhHQIi99Q40dil1fZQoaAZHQHDDDMV1wHZoB02XAWgIR0CIwOQXhwVCdX2UKGgGR8A5GhGYrrgPaAdN6ANoCEdAiMgiZOSGJ3V9lChoBkfAWVbiZOSGJ2gHTYoCaAhHQIjMunl4keJ1fZQoaAZHwCHFRk3CKrJoB03oA2gIR0CI04K77Kq5dX2UKGgGR8BMAJPAO8TSaAdN6ANoCEdAiNp7Lt/nXHV9lChoBkdAb2GbdadMCmgHTZMBaAhHQIjdPBciW3V1fZQoaAZHwEcPNY8uBc1oB03oA2gIR0CI5Au8K5TZdX2UKGgGR8BOaqrq+rU9aAdN6ANoCEdAiOs2sijcmHV9lChoBkfASsJSFXaJymgHTegDaAhHQIjyFqk/KQt1fZQoaAZHQFyWMQVbiZRoB03RAmgIR0CI9w8Zk079dX2UKGgGR0BoTzPv8ZUDaAdNUgFoCEdAiPldcKPXCnV9lChoBkfAS7f+yZ8a42gHTegDaAhHQIkAY0VJtix1fZQoaAZHwE6f38GcFyJoB03oA2gIR0CJB00u14PgdX2UKGgGR8A7xOLiuMdcaAdN6ANoCEdAiQ4fiPyTZHV9lChoBkfAQj0iW3Sa3WgHTegDaAhHQIkVBFuvUz91fZQoaAZHwDu/7FbVz6toB03oA2gIR0CJG/rTH80ldX2UKGgGR8BEiySvC/GmaAdN6ANoCEdAiSNI7FKkEnV9lChoBkfARkH8hs67umgHTegDaAhHQIkqMVnEl3R1fZQoaAZHQGce8NhE0BRoB03fAWgIR0CJLYanaWX1dX2UKGgGR8BFkc8cMmWuaAdN6ANoCEdAiTSgFotcwHV9lChoBkfAO8uFxn3+M2gHTegDaAhHQIk7V/Ue+251fZQoaAZHwEbWKpkwvg5oB03oA2gIR0CJUUi6g/TtdX2UKGgGR0Bkf1ke6qbSaAdNrAJoCEdAiVa8IiTt9nV9lChoBkdAZM1w5vLowGgHTQECaAhHQIlbfg75mAd1fZQoaAZHwEoygFotcwBoB03oA2gIR0CJYvlnyup0dX2UKGgGR0BjJ5LytmthaAdNWwJoCEdAiWbARTS9d3V9lChoBkfAT44EIPbwjWgHTegDaAhHQIltBUedTYN1fZQoaAZHwAppLVWjoIRoB03oA2gIR0CJc2oNNJvpdX2UKGgGR8BNINcv/R3NaAdL3GgIR0CJdNSaVlf7dX2UKGgGR0BfXmuX/o7naAdNlANoCEdAiXrv2Xb/O3V9lChoBkfASc0bedkJ8mgHTegDaAhHQImCcU47zTZ1fZQoaAZHwEPC2Xsw+MZoB01iAWgIR0CJhNbJOnEVdX2UKGgGR8BFY8clw97oaAdN6ANoCEdAiYxkTHsC1nV9lChoBkfAPi1lkH2RJWgHTegDaAhHQImWDHyVfNR1fZQoaAZHwEInUVi4J/poB03oA2gIR0CJnWZdfLLZdX2UKGgGR8BQ0Run/DLsaAdN6ANoCEdAiaOVjRUm2XV9lChoBkdAFG5Jsfq5b2gHTegDaAhHQImqJMtbs4V1fZQoaAZHwEyjKyOaOPxoB03oA2gIR0CJsX26kIomdX2UKGgGR8A/BV3EAHVxaAdN6ANoCEdAibu8XenAI3V9lChoBkdAYZogqVhTfmgHTf8CaAhHQInB1HWjGkx1fZQoaAZHwDXyn2qT8pFoB03oA2gIR0CJyKLux8lYdX2UKGgGR8A3o+yquKXOaAdN6ANoCEdAidALbxmTT3V9lChoBkfAbTZVAiV0LmgHSz5oCEdAidCNITXarXV9lChoBkdAOIhXr+o992gHTegDaAhHQInX+NxVAA11fZQoaAZHQF0j5aePJaJoB03sAmgIR0CJ3TjkMkQgdX2UKGgGR8BCEtpmEoOQaAdN6ANoCEdAieRwyIpH7XV9lChoBkfATAg7vG6wuGgHTegDaAhHQInsERzzVc51fZQoaAZHwDYISlFc6eZoB03oA2gIR0CJ9U4YJmdzdX2UKGgGR8A9YWgvlEJCaAdN6ANoCEdAifxr6tT1kHV9lChoBkdAWK+KGcnVomgHTdIDaAhHQIoGa9RJmNB1fZQoaAZHwDIWHN5dGAloB03oA2gIR0CKD1M0P6KtdX2UKGgGR8AxgwiqyWzGaAdN6ANoCEdAiigUCq6vq3V9lChoBkfAar2YcebNKWgHTa4BaAhHQIorU7MgU111fZQoaAZHQBsj06HTI/9oB03oA2gIR0CKNhd2Pkq+dX2UKGgGR8BzUN0IToMbaAdLTmgIR0CKNyP3i704dX2UKGgGR8BYvUcbR4QjaAdL4GgIR0CKOYy1NQCTdX2UKGgGR8BvoJBZ6lchaAdLTGgIR0CKOpZrYXfqdX2UKGgGR0A55mYSg5BDaAdN6ANoCEdAikeKE384xXV9lChoBkfAS1qAYpDu0GgHTegDaAhHQIpSNEd/8VJ1fZQoaAZHwECM+yquKXRoB03oA2gIR0CKW0Aksz2wdX2UKGgGR8BQXYaHbh3raAdL3WgIR0CKXXztCzC2dX2UKGgGR8Avhyhi9ZieaAdN6ANoCEdAimfHfl6qsHV9lChoBkdAQ7JzeXRgJGgHTegDaAhHQIpxXQMQVbl1fZQoaAZHwDiH94u9OARoB03oA2gIR0CKebYvnKW+dX2UKGgGR8BSk5sCT2WZaAdN6ANoCEdAioFZdOZb6nV9lChoBkdAamkSdOIqLGgHTe4BaAhHQIqElSn+AEt1fZQoaAZHwEAU+oLofSxoB03oA2gIR0CKjKzt1IRRdX2UKGgGR8Br2m0LMLWqaAdLXGgIR0CKjWlsP8Q7dX2UKGgGR8BYQI8hcJMQaAdNcgFoCEdAipAyp71Iy3V9lChoBkfAU65lpXZGrmgHTVsCaAhHQIqUxM+NcW11fZQoaAZHQGPnophF3INoB01jA2gIR0CKmyJMQEpzdX2UKGgGR0BXh5AQg9vCaAdN0QNoCEdAiqNH5JsfrHV9lChoBkfAZbmJhvze42gHTY0DaAhHQIqqqNbTtsx1fZQoaAZHwEXCM4tHxz9oB03oA2gIR0CKsep2ECeVdX2UKGgGR0BS+/kiliz+aAdN0ANoCEdAirjEM9bHInV9lChoBkfAODVq33Hq/2gHTegDaAhHQIq/g3irDIl1fZQoaAZHQG4Urr5ZbINoB03qAWgIR0CKwsVQhwERdX2UKGgGR0BiLhqGlANYaAdN+gJoCEdAisg6UJOWSnV9lChoBkdAY+AOCGvfTGgHTfwCaAhHQIrN3xSYPXl1fZQoaAZHwEu2d6sySFJoB03oA2gIR0CK1ML61stTdX2UKGgGR8BI/YVqN6w/aAdN6ANoCEdAittqZML4OHV9lChoBkfAP7fMOf/WD2gHTegDaAhHQIriPdTHbRF1fZQoaAZHQFZF2hqTKT1oB03oA2gIR0CK6TGXokiVdWUu"
48
+ },
49
+ "ep_success_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
52
+ },
53
+ "_n_updates": 231249,
54
+ "observation_space": {
55
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
56
+ ":serialized:": "gAWVMwUAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWIAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAZRoFUsghZRoGXSUUpSMBl9zaGFwZZRLIIWUjANsb3eUaBEoloAAAAAAAAAAAADAvwAAwL8AAMC/AADAvwAAwL8AAMC/AADAvwAAwL8AAKDAAACgwAAAoMAAAKDAAACgwAAAoMAAAKDAAACgwNsPScDbD0nA2w9JwNsPScAAAKDAAACgwAAAoMAAAKDAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAICUaAtLIIWUaBl0lFKUjARoaWdolGgRKJaAAAAAAAAAAAAAwD8AAMA/AADAPwAAwD8AAMA/AADAPwAAwD8AAMA/AACgQAAAoEAAAKBAAACgQAAAoEAAAKBAAACgQAAAoEDbD0lA2w9JQNsPSUDbD0lAAACgQAAAoEAAAKBAAACgQAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSyCFlGgZdJRSlIwIbG93X3JlcHKUWEsBAABbLTEuNSAgICAgICAtMS41ICAgICAgIC0xLjUgICAgICAgLTEuNSAgICAgICAtMS41ICAgICAgIC0xLjUKIC0xLjUgICAgICAgLTEuNSAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtNS4KIC01LiAgICAgICAgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtMy4xNDE1OTI3CiAtMy4xNDE1OTI3IC0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTUuCiAtMC4gICAgICAgIC0wLiAgICAgICAgLTAuICAgICAgICAtMC4gICAgICAgIC0wLiAgICAgICAgLTAuCiAtMC4gICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylFgqAQAAWzEuNSAgICAgICAxLjUgICAgICAgMS41ICAgICAgIDEuNSAgICAgICAxLjUgICAgICAgMS41ICAgICAgIDEuNQogMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDUuICAgICAgICA1LiAgICAgICAgNS4KIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDMuMTQxNTkyNyAzLjE0MTU5MjcgMy4xNDE1OTI3IDUuCiA1LiAgICAgICAgNS4gICAgICAgIDUuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
57
+ "dtype": "float32",
58
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True\n True True True True True True True True]",
59
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True\n True True True True True True True True]",
60
+ "_shape": [
61
+ 32
62
+ ],
63
+ "low": "[-1.5 -1.5 -1.5 -1.5 -1.5 -1.5\n -1.5 -1.5 -5. -5. -5. -5.\n -5. -5. -5. -5. -3.1415927 -3.1415927\n -3.1415927 -3.1415927 -5. -5. -5. -5.\n -0. -0. -0. -0. -0. -0.\n -0. -0. ]",
64
+ "high": "[1.5 1.5 1.5 1.5 1.5 1.5 1.5\n 1.5 5. 5. 5. 5. 5. 5.\n 5. 5. 3.1415927 3.1415927 3.1415927 3.1415927 5.\n 5. 5. 5. 1. 1. 1. 1.\n 1. 1. 1. 1. ]",
65
+ "low_repr": "[-1.5 -1.5 -1.5 -1.5 -1.5 -1.5\n -1.5 -1.5 -5. -5. -5. -5.\n -5. -5. -5. -5. -3.1415927 -3.1415927\n -3.1415927 -3.1415927 -5. -5. -5. -5.\n -0. -0. -0. -0. -0. -0.\n -0. -0. ]",
66
+ "high_repr": "[1.5 1.5 1.5 1.5 1.5 1.5 1.5\n 1.5 5. 5. 5. 5. 5. 5.\n 5. 5. 3.1415927 3.1415927 3.1415927 3.1415927 5.\n 5. 5. 5. 1. 1. 1. 1.\n 1. 1. 1. 1. ]",
67
+ "_np_random": null
68
+ },
69
+ "action_space": {
70
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
71
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
72
+ "n": "4",
73
+ "start": "0",
74
+ "_shape": [],
75
+ "dtype": "int64",
76
+ "_np_random": "Generator(PCG64)"
77
+ },
78
+ "n_envs": 1,
79
+ "buffer_size": 1,
80
+ "batch_size": 32,
81
+ "learning_starts": 100000,
82
+ "tau": 1.0,
83
+ "gamma": 0.99,
84
+ "gradient_steps": 1,
85
+ "optimize_memory_usage": false,
86
+ "replay_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
91
+ "__init__": "<function ReplayBuffer.__init__ at 0x0000020049FB4040>",
92
+ "add": "<function ReplayBuffer.add at 0x0000020049FB40E0>",
93
+ "sample": "<function ReplayBuffer.sample at 0x0000020049FB4180>",
94
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x0000020049FB4220>",
95
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x0000020049FB42C0>)>",
96
+ "__abstractmethods__": "frozenset()",
97
+ "_abc_impl": "<_abc._abc_data object at 0x0000020049F380C0>"
98
+ },
99
+ "replay_buffer_kwargs": {},
100
+ "train_freq": {
101
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
102
+ ":serialized:": "gAWVeAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBIwIYnVpbHRpbnOUjAdnZXRhdHRylJOUaACMElRyYWluRnJlcXVlbmN5VW5pdJSTlIwEU1RFUJSGlFKUhpSBlC4="
103
+ },
104
+ "use_sde_at_warmup": false,
105
+ "exploration_initial_eps": 1.0,
106
+ "exploration_final_eps": 0.01,
107
+ "exploration_fraction": 0.1,
108
+ "target_update_interval": 1000,
109
+ "_n_calls": 1124999,
110
+ "max_grad_norm": 10,
111
+ "exploration_rate": 0.01,
112
+ "lr_schedule": {
113
+ ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVogIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xwaWV0cm9sdW9uZ29cbWluaWNvbmRhM1xlbnZzXHJlbGVhcm5cTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
115
+ },
116
+ "batch_norm_stats": [],
117
+ "batch_norm_stats_target": [],
118
+ "exploration_schedule": {
119
+ ":type:": "<class 'function'>",
120
+ ":serialized:": "gAWVfgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQzyVA5cAZAF8AHoKAACJAmsEAAAAAHICiQFTAIkDZAF8AHoKAACJAYkDegoAAHoFAACJAnoLAAB6AAAAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMYUM6XFVzZXJzXHBpZXRyb2x1b25nb1xtaW5pY29uZGEzXGVudnNccmVsZWFyblxMaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlEtxQzj4gADYDA3QECLRDCKgbNILMtALMtgTFohK4BMYmEHQIDLRHDKwc7hVsXvRG0PAbNEbUtETUtAMUpRDAJSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGmgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgvdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBuMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP4R64UeuFHuFlFKUaDdHP7mZmZmZmZqFlFKUaDdHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
121
+ }
122
+ }
dqn-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87e0f6c1ee40d6f49383210c45181251e5890fb7fc66377f89ad710757199fe4
3
+ size 57263
dqn-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f26adaf033106c189db8fea84cba5f8497271e81e205d40090c00f03ae53dacd
3
+ size 56321
dqn-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.22621-SP0 10.0.22621
2
+ - Python: 3.11.4
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b09e9eb0492ca8d7c74078a773f55d2305d50466ac90fdaf01916625f666cc
3
+ size 184069
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 82.02869400000002, "std_reward": 144.86693173626506, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-13T00:55:13.012968"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e696c0dc42f08989ac036dd5292dbab384bfc7ad36437f4207182ca59588fd1d
3
+ size 61159