--- library_name: transformers license: other base_model: Qwen/Qwen2.5-3B tags: - axolotl - generated_from_trainer datasets: - allenai/tulu-3-sft-mixture model-index: - name: II-Tulu-3B-SFT results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.3.dev0` ```yaml wandb_project: llm-training-platform wandb_name: II-Tulu-3B-SFT datasets: - path: allenai/tulu-3-sft-mixture split: train type: chat_template field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant chat_template: qwen_25 sequence_len: 2048 base_model: Qwen/Qwen2.5-3B output_dir: checkpoints/1357e2cd-76bc-46d5-a394-949b712427c7 dataset_prepared_path: checkpoints/1357e2cd-76bc-46d5-a394-949b712427c7/dataset_prepared flash_attention: true train_on_inputs: false pad_to_sequence_len: true eval_sample_packing: false push_to_hub: true bf16: auto gradient_checkpointing: true logging_steps: 10 hub_model_id: phunguyen01/II-Tulu-3B-SFT learning_rate: 5.0e-06 micro_batch_size: 8 num_epochs: 2 seed: 42 gradient_accumulation_steps: 2 sample_packing: true val_set_size: 0 ```

# II-Tulu-3B-SFT This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the allenai/tulu-3-sft-mixture dataset. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/633e5f8e6258c67d220ed806/vZ-cC_BBjA0hfe3yLyOka.png) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.47.0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0