--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-large-sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9644495412844036 --- # roberta-large-sst2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1400 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3688 | 1.0 | 264 | 0.1444 | 0.9564 | | 0.1529 | 2.0 | 528 | 0.1502 | 0.9518 | | 0.107 | 3.0 | 792 | 0.1388 | 0.9530 | | 0.0666 | 4.0 | 1056 | 0.1400 | 0.9644 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6