from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM import torch class PreTrainedPipeline: def __init__(self, path=""): # load the optimized model self.model = AutoModelForCausalLM.from_pretrained( path, torch_dtype=torch.float16, device_map="auto", load_in_8bit=True ) self.tokenizer = AutoTokenizer.from_pretrained(path) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The list contains the embeddings of the inference inputs """ inputs = data.get("inputs", data) parameters = data.get("parameters", {}) # tokenize the input input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids.to(self.model.device) # run the model logits = self.model.generate(input_ids, **parameters) # Perform pooling # postprocess the prediction return {"generated_text": self.tokenizer.decode(logits[0].tolist())}