Commit
·
17e379b
1
Parent(s):
a745926
added pipeline
Browse files- README.md +59 -0
- create_handler.ipynb +251 -0
- pipeline.py +31 -0
- requirements.txt +4 -0
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
tags:
|
4 |
+
- endpoints-template
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
---
|
7 |
+
# Sharded fork of [Salesforce/codegen-6B-mono](https://huggingface.co/Salesforce/codegen-6B-mono) with a custom pipeline.py
|
8 |
+
|
9 |
+
This repository implements a custom `pipeline` task for `text-generation` for 🤗 Inference Endpoints for LLM inference using bitsandbytes quantization. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/codegen-6B-mono-sharded-bnb/blob/main/pipeline.py).
|
10 |
+
|
11 |
+
There is also a [notebook](https://huggingface.co/philschmid/codegen-6B-mono-sharded-bnb/blob/main/create_handler.ipynb) included.
|
12 |
+
|
13 |
+
### expected Request payload
|
14 |
+
```json
|
15 |
+
{
|
16 |
+
"inputs": "# load distilbert model and initialize text-classification pipeline\nmodel_id = 'distil",
|
17 |
+
"parameters": {
|
18 |
+
"top_k": 100,
|
19 |
+
"max_length": 64,
|
20 |
+
"early_stopping": true,
|
21 |
+
"do_sample": true,
|
22 |
+
"eos_token_id": 50256,
|
23 |
+
}
|
24 |
+
}
|
25 |
+
```
|
26 |
+
|
27 |
+
below is an example on how to run a request using Python and `requests`.
|
28 |
+
|
29 |
+
## Run Request
|
30 |
+
```python
|
31 |
+
import json
|
32 |
+
from typing import List
|
33 |
+
import requests as r
|
34 |
+
import base64
|
35 |
+
ENDPOINT_URL = ""
|
36 |
+
HF_TOKEN = ""
|
37 |
+
|
38 |
+
parameters={
|
39 |
+
"top_k": 100,
|
40 |
+
"max_length": 64,
|
41 |
+
"early_stopping": True,
|
42 |
+
"do_sample": True,
|
43 |
+
"eos_token_id": 50256,
|
44 |
+
}
|
45 |
+
|
46 |
+
def predict(code_snippet:str=None):
|
47 |
+
payload = {"inputs": code_snippet,"parameters": parameters}
|
48 |
+
response = r.post(
|
49 |
+
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload
|
50 |
+
)
|
51 |
+
return response.json()
|
52 |
+
prediction = predict(
|
53 |
+
code_snippet="# load distilbert model and initialize text-classification pipeline\nmodel_id = 'distil"
|
54 |
+
)
|
55 |
+
```
|
56 |
+
expected output
|
57 |
+
```python
|
58 |
+
{'generated_text': "# load distilbert model and initialize text-classification pipeline\nmodel_id = 'distilbert-base-uncased'\nmodel_url = 'https://tfhub.dev/tensorflow/small_bert/1'\n\nmodel_dir = './distilBERT'"}
|
59 |
+
```
|
create_handler.ipynb
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Setup & Installation"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 2,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"Writing requirements.txt\n"
|
20 |
+
]
|
21 |
+
}
|
22 |
+
],
|
23 |
+
"source": [
|
24 |
+
"%%writefile requirements.txt\n",
|
25 |
+
"bitsandbytes\n",
|
26 |
+
"git+https://github.com/huggingface/transformers.git\n",
|
27 |
+
"accelerate\n",
|
28 |
+
"sentencepiece"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": null,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"!pip install -r requirements.txt"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "markdown",
|
42 |
+
"metadata": {},
|
43 |
+
"source": [
|
44 |
+
"## 3. Create Custom Handler for Inference Endpoints\n"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": 1,
|
50 |
+
"metadata": {},
|
51 |
+
"outputs": [
|
52 |
+
{
|
53 |
+
"name": "stdout",
|
54 |
+
"output_type": "stream",
|
55 |
+
"text": [
|
56 |
+
"Overwriting pipeline.py\n"
|
57 |
+
]
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"source": [
|
61 |
+
"%%writefile pipeline.py\n",
|
62 |
+
"from typing import Dict, List, Any\n",
|
63 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
64 |
+
"import torch\n",
|
65 |
+
"\n",
|
66 |
+
"class PreTrainedPipeline():\n",
|
67 |
+
" def __init__(self, path=\"\"):\n",
|
68 |
+
" # load the optimized model\n",
|
69 |
+
" self.model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, device_map=\"auto\", load_in_8bit=True)\n",
|
70 |
+
" self.tokenizer = AutoTokenizer.from_pretrained(path)\n",
|
71 |
+
"\n",
|
72 |
+
" def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
|
73 |
+
" \"\"\"\n",
|
74 |
+
" Args:\n",
|
75 |
+
" data (:obj:):\n",
|
76 |
+
" includes the input data and the parameters for the inference.\n",
|
77 |
+
" Return:\n",
|
78 |
+
" A :obj:`list`:. The list contains the embeddings of the inference inputs\n",
|
79 |
+
" \"\"\"\n",
|
80 |
+
" inputs = data.get(\"inputs\", data)\n",
|
81 |
+
" parameters = data.get(\"parameters\", {})\n",
|
82 |
+
"\n",
|
83 |
+
" # tokenize the input\n",
|
84 |
+
" input_ids = self.tokenizer(inputs,return_tensors=\"pt\").input_ids.to(self.model.device)\n",
|
85 |
+
" # run the model\n",
|
86 |
+
" logits = self.model.generate(input_ids, **parameters)\n",
|
87 |
+
" # Perform pooling\n",
|
88 |
+
" # postprocess the prediction\n",
|
89 |
+
" return {\"generated_text\": self.tokenizer.decode(logits[0].tolist())}"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "markdown",
|
94 |
+
"metadata": {},
|
95 |
+
"source": [
|
96 |
+
"test custom pipeline"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 2,
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [
|
104 |
+
{
|
105 |
+
"name": "stdout",
|
106 |
+
"output_type": "stream",
|
107 |
+
"text": [
|
108 |
+
"\n",
|
109 |
+
"===================================BUG REPORT===================================\n",
|
110 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
111 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
112 |
+
"================================================================================\n",
|
113 |
+
"CUDA SETUP: CUDA runtime path found: /home/ubuntu/miniconda/envs/dev/lib/libcudart.so\n",
|
114 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
115 |
+
"CUDA SETUP: Detected CUDA version 113\n",
|
116 |
+
"CUDA SETUP: Loading binary /home/ubuntu/miniconda/envs/dev/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda113.so...\n"
|
117 |
+
]
|
118 |
+
}
|
119 |
+
],
|
120 |
+
"source": [
|
121 |
+
"from pipeline import PreTrainedPipeline\n",
|
122 |
+
"\n",
|
123 |
+
"# init handler\n",
|
124 |
+
"my_handler = PreTrainedPipeline(path=\".\")"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 3,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"name": "stderr",
|
134 |
+
"output_type": "stream",
|
135 |
+
"text": [
|
136 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
137 |
+
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n",
|
138 |
+
"/home/ubuntu/miniconda/envs/dev/lib/python3.9/site-packages/transformers/generation_utils.py:1228: UserWarning: Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to 20 (`self.config.max_length`). Controlling `max_length` via the config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
|
139 |
+
" warnings.warn(\n",
|
140 |
+
"/home/ubuntu/miniconda/envs/dev/lib/python3.9/site-packages/transformers/models/codegen/modeling_codegen.py:167: UserWarning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead. (Triggered internally at ../aten/src/ATen/native/TensorCompare.cpp:333.)\n",
|
141 |
+
" attn_weights = torch.where(causal_mask, attn_weights, mask_value)\n"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"data": {
|
146 |
+
"text/plain": [
|
147 |
+
"{'generated_text': 'def hello_world():\\n return \"Hello World\"\\n\\[email protected](\\'/'}"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
"execution_count": 3,
|
151 |
+
"metadata": {},
|
152 |
+
"output_type": "execute_result"
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"source": [
|
156 |
+
"\n",
|
157 |
+
"# prepare sample payload\n",
|
158 |
+
"request = {\"inputs\": \"def hello_world():\"}\n",
|
159 |
+
"\n",
|
160 |
+
"# test the handler\n",
|
161 |
+
"my_handler(request)"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 6,
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [
|
169 |
+
{
|
170 |
+
"name": "stderr",
|
171 |
+
"output_type": "stream",
|
172 |
+
"text": [
|
173 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
174 |
+
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"name": "stdout",
|
179 |
+
"output_type": "stream",
|
180 |
+
"text": [
|
181 |
+
"{'generated_text': \"# load distilbert model and initialize text-classification pipeline\\nmodel_id = 'distilbert-base-uncased'\\nmodel_url = 'https://tfhub.dev/tensorflow/small_bert/1'\\n\\nmodel_dir = './distilBERT'\"}\n"
|
182 |
+
]
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"source": [
|
186 |
+
"# prepare sample payload\n",
|
187 |
+
"request = {\n",
|
188 |
+
" \"inputs\": \"# load distilbert model and initialize text-classification pipeline\\nmodel_id = 'distil\",\n",
|
189 |
+
" \"parameters\": {\n",
|
190 |
+
" \"top_k\": 100,\n",
|
191 |
+
" \"max_length\": 64,\n",
|
192 |
+
" \"early_stopping\": True,\n",
|
193 |
+
" \"do_sample\": True,\n",
|
194 |
+
" \"eos_token_id\": 50256,\n",
|
195 |
+
" },\n",
|
196 |
+
"}\n",
|
197 |
+
"\n",
|
198 |
+
"# test the handler\n",
|
199 |
+
"print(my_handler(request))\n"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 13,
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [
|
207 |
+
{
|
208 |
+
"data": {
|
209 |
+
"text/plain": [
|
210 |
+
"50256"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
"execution_count": 13,
|
214 |
+
"metadata": {},
|
215 |
+
"output_type": "execute_result"
|
216 |
+
}
|
217 |
+
],
|
218 |
+
"source": [
|
219 |
+
"my_handler.tokenizer.convert_tokens_to_ids(my_handler.tokenizer.eos_token)\n",
|
220 |
+
"git remote set-url origin https://git-repo/new-repository.git"
|
221 |
+
]
|
222 |
+
}
|
223 |
+
],
|
224 |
+
"metadata": {
|
225 |
+
"kernelspec": {
|
226 |
+
"display_name": "Python 3.9.13 ('dev': conda)",
|
227 |
+
"language": "python",
|
228 |
+
"name": "python3"
|
229 |
+
},
|
230 |
+
"language_info": {
|
231 |
+
"codemirror_mode": {
|
232 |
+
"name": "ipython",
|
233 |
+
"version": 3
|
234 |
+
},
|
235 |
+
"file_extension": ".py",
|
236 |
+
"mimetype": "text/x-python",
|
237 |
+
"name": "python",
|
238 |
+
"nbconvert_exporter": "python",
|
239 |
+
"pygments_lexer": "ipython3",
|
240 |
+
"version": "3.9.13"
|
241 |
+
},
|
242 |
+
"orig_nbformat": 4,
|
243 |
+
"vscode": {
|
244 |
+
"interpreter": {
|
245 |
+
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
|
246 |
+
}
|
247 |
+
}
|
248 |
+
},
|
249 |
+
"nbformat": 4,
|
250 |
+
"nbformat_minor": 2
|
251 |
+
}
|
pipeline.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class PreTrainedPipeline:
|
7 |
+
def __init__(self, path=""):
|
8 |
+
# load the optimized model
|
9 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
path, torch_dtype=torch.float16, device_map="auto", load_in_8bit=True
|
11 |
+
)
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
13 |
+
|
14 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
15 |
+
"""
|
16 |
+
Args:
|
17 |
+
data (:obj:):
|
18 |
+
includes the input data and the parameters for the inference.
|
19 |
+
Return:
|
20 |
+
A :obj:`list`:. The list contains the embeddings of the inference inputs
|
21 |
+
"""
|
22 |
+
inputs = data.get("inputs", data)
|
23 |
+
parameters = data.get("parameters", {})
|
24 |
+
|
25 |
+
# tokenize the input
|
26 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids.to(self.model.device)
|
27 |
+
# run the model
|
28 |
+
logits = self.model.generate(input_ids, **parameters)
|
29 |
+
# Perform pooling
|
30 |
+
# postprocess the prediction
|
31 |
+
return {"generated_text": self.tokenizer.decode(logits[0].tolist())}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bitsandbytes
|
2 |
+
git+https://github.com/huggingface/transformers.git
|
3 |
+
accelerate
|
4 |
+
sentencepiece
|