Commit
·
b0e4fff
verified
·
0
Parent(s):
Duplicate from Crystalcareai/Quiet-Star-Custom
Browse filesCo-authored-by: Lucas Atkins <[email protected]>
- .gitattributes +35 -0
- README.md +6 -0
- added_tokens.json +4 -0
- config.json +41 -0
- configuration_quiet.py +172 -0
- generate.py +210 -0
- generation_config.json +6 -0
- inference.py +121 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +305 -0
- modeling_quiet.py +2335 -0
- optuna.py +153 -0
- sft-dora-alpaca.py +162 -0
- special_tokens_map.json +40 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +61 -0
- train-h100-sharegpt-sft.py +193 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- open-web-math/open-web-math
|
4 |
+
---
|
5 |
+
|
6 |
+
Mistral-7b with continued pretraining using Quiet-STaR (https://arxiv.org/abs/2403.09629) for generating 8 thought tokens before each output token.
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endthought|>": 32000,
|
3 |
+
"<|startthought|>": 32001
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Crystalcareai/Quiet-Star-Custom",
|
3 |
+
"architectures": [
|
4 |
+
"QuietForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "Crystalcareai/Quiet-Star-Custom--configuration_quiet.QuietConfig",
|
9 |
+
"AutoModel": "Crystalcareai/Quiet-Star-Custom--modeling_quiet.QuietModel",
|
10 |
+
"AutoModelForCausalLM": "Crystalcareai/Quiet-Star-Custom--modeling_quiet.QuietForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 14336,
|
18 |
+
"max_position_embeddings": 32768,
|
19 |
+
"max_thoughts": 10,
|
20 |
+
"merged_lm_and_talk_heads": false,
|
21 |
+
"merged_lm_and_think_heads": true,
|
22 |
+
"merged_talk_heads": true,
|
23 |
+
"model_type": "quiet",
|
24 |
+
"num_attention_heads": 32,
|
25 |
+
"num_hidden_layers": 32,
|
26 |
+
"num_key_value_heads": 8,
|
27 |
+
"rms_norm_eps": 1e-05,
|
28 |
+
"rope_theta": 10000.0,
|
29 |
+
"sliding_window": 4096,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.37.0.dev0",
|
33 |
+
"use_cache": true,
|
34 |
+
"use_complex_talk_head": true,
|
35 |
+
"use_complex_think_head": false,
|
36 |
+
"use_concat_talk_head": true,
|
37 |
+
"use_shallow_talk": false,
|
38 |
+
"use_shallow_think": true,
|
39 |
+
"use_weighted_talk_head": true,
|
40 |
+
"vocab_size": 32002
|
41 |
+
}
|
configuration_quiet.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Quiet AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Quiet model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
QUIET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"quietai/Quiet-7B-v0.1": "https://huggingface.co/quietai/Quiet-7B-v0.1/resolve/main/config.json",
|
25 |
+
"quietai/Quiet-7B-Instruct-v0.1": "https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1/resolve/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class QuietConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`QuietModel`]. It is used to instantiate an
|
32 |
+
Quiet model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
with the defaults will yield a similar configuration to that of the Quiet-7B-v0.1 or Quiet-7B-Instruct-v0.1.
|
34 |
+
[quietai/Quiet-7B-v0.1](https://huggingface.co/quietai/Quiet-7B-v0.1)
|
35 |
+
[quietai/Quiet-7B-Instruct-v0.1](https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1)
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
+
Vocabulary size of the Quiet model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`QuietModel`]
|
42 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
+
Dimension of the hidden representations.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
45 |
+
Dimension of the MLP representations.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
60 |
+
The maximum sequence length that this model might ever be used with. Quiet's sliding window attention
|
61 |
+
allows sequence of up to 4096*32 tokens.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
pad_token_id (`int`, *optional*):
|
70 |
+
The id of the padding token.
|
71 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
72 |
+
The id of the "beginning-of-sequence" token.
|
73 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
74 |
+
The id of the "end-of-sequence" token.
|
75 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether the model's input and output word embeddings should be tied.
|
77 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
78 |
+
The base period of the RoPE embeddings.
|
79 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
80 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
81 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
82 |
+
The dropout ratio for the attention probabilities.
|
83 |
+
```python
|
84 |
+
>>> from transformers import QuietModel, QuietConfig
|
85 |
+
>>> # Initializing a Quiet 7B style configuration
|
86 |
+
>>> configuration = QuietConfig()
|
87 |
+
>>> # Initializing a model from the Quiet 7B style configuration
|
88 |
+
>>> model = QuietModel(configuration)
|
89 |
+
>>> # Accessing the model configuration
|
90 |
+
>>> configuration = model.config
|
91 |
+
```"""
|
92 |
+
|
93 |
+
model_type = "quiet"
|
94 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
vocab_size=32000,
|
99 |
+
hidden_size=4096,
|
100 |
+
intermediate_size=14336,
|
101 |
+
num_hidden_layers=32,
|
102 |
+
num_attention_heads=32,
|
103 |
+
num_key_value_heads=8,
|
104 |
+
hidden_act="silu",
|
105 |
+
max_position_embeddings=4096 * 32,
|
106 |
+
initializer_range=0.02,
|
107 |
+
rms_norm_eps=1e-6,
|
108 |
+
use_cache=True,
|
109 |
+
pad_token_id=None,
|
110 |
+
bos_token_id=1,
|
111 |
+
eos_token_id=2,
|
112 |
+
tie_word_embeddings=False,
|
113 |
+
rope_theta=10000.0,
|
114 |
+
complexity_factor = 0.5,
|
115 |
+
sliding_window=4096,
|
116 |
+
attention_dropout=0.0,
|
117 |
+
max_thoughts=16,
|
118 |
+
max_time=None,
|
119 |
+
max_temperature=10,
|
120 |
+
merged_talk_heads=True,
|
121 |
+
merged_lm_and_talk_heads=False,
|
122 |
+
merged_lm_and_think_heads=True,
|
123 |
+
use_concat_talk_head=True,
|
124 |
+
use_shallow_think=True,
|
125 |
+
use_shallow_talk=False,
|
126 |
+
use_complex_think_head=False,
|
127 |
+
use_complex_talk_head=True,
|
128 |
+
use_weighted_talk_head=True,
|
129 |
+
hidden_dropout_prob=0.0,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
self.vocab_size = vocab_size
|
133 |
+
self.max_position_embeddings = max_position_embeddings
|
134 |
+
self.hidden_size = hidden_size
|
135 |
+
self.intermediate_size = intermediate_size
|
136 |
+
self.num_hidden_layers = num_hidden_layers
|
137 |
+
self.num_attention_heads = num_attention_heads
|
138 |
+
self.sliding_window = sliding_window
|
139 |
+
|
140 |
+
# for backward compatibility
|
141 |
+
if num_key_value_heads is None:
|
142 |
+
num_key_value_heads = num_attention_heads
|
143 |
+
|
144 |
+
self.num_key_value_heads = num_key_value_heads
|
145 |
+
self.hidden_act = hidden_act
|
146 |
+
self.initializer_range = initializer_range
|
147 |
+
self.rms_norm_eps = rms_norm_eps
|
148 |
+
self.use_cache = use_cache
|
149 |
+
self.rope_theta = rope_theta
|
150 |
+
self.attention_dropout = attention_dropout
|
151 |
+
self.max_thoughts = max_thoughts
|
152 |
+
self.max_time = max_time
|
153 |
+
self.complexity_factor = complexity_factor
|
154 |
+
self.max_temperature = max_temperature
|
155 |
+
self.merged_talk_heads = merged_talk_heads
|
156 |
+
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
|
157 |
+
self.merged_lm_and_think_heads = merged_lm_and_think_heads
|
158 |
+
self.use_concat_talk_head = use_concat_talk_head
|
159 |
+
self.use_shallow_think = use_shallow_think
|
160 |
+
self.use_shallow_talk = use_shallow_talk
|
161 |
+
self.use_complex_think_head = use_complex_think_head
|
162 |
+
self.use_complex_talk_head = use_complex_talk_head
|
163 |
+
self.use_weighted_talk_head = use_weighted_talk_head
|
164 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
165 |
+
|
166 |
+
super().__init__(
|
167 |
+
pad_token_id=pad_token_id,
|
168 |
+
bos_token_id=bos_token_id,
|
169 |
+
eos_token_id=eos_token_id,
|
170 |
+
tie_word_embeddings=tie_word_embeddings,
|
171 |
+
**kwargs,
|
172 |
+
)
|
generate.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers.generation.utils import (
|
3 |
+
GenerationMixin,
|
4 |
+
validate_stopping_criteria,
|
5 |
+
StoppingCriteriaList,
|
6 |
+
)
|
7 |
+
from transformers import TextStreamer
|
8 |
+
|
9 |
+
|
10 |
+
def custom_generate(
|
11 |
+
self,
|
12 |
+
input_ids,
|
13 |
+
attention_mask=None,
|
14 |
+
max_new_tokens=None,
|
15 |
+
min_length=None,
|
16 |
+
do_sample=None,
|
17 |
+
early_stopping=None,
|
18 |
+
num_beams=None,
|
19 |
+
temperature=None,
|
20 |
+
top_k=None,
|
21 |
+
top_p=None,
|
22 |
+
repetition_penalty=None,
|
23 |
+
bad_words_ids=None,
|
24 |
+
bos_token_id=None,
|
25 |
+
pad_token_id=None,
|
26 |
+
eos_token_id=None,
|
27 |
+
streamer=None,
|
28 |
+
length_penalty=None,
|
29 |
+
no_repeat_ngram_size=None,
|
30 |
+
num_return_sequences=None,
|
31 |
+
decoder_start_token_id=None,
|
32 |
+
use_cache=None,
|
33 |
+
num_beam_groups=None,
|
34 |
+
diversity_penalty=None,
|
35 |
+
prefix_allowed_tokens_fn=None,
|
36 |
+
output_attentions=None,
|
37 |
+
output_hidden_states=None,
|
38 |
+
output_scores=None,
|
39 |
+
return_dict_in_generate=None,
|
40 |
+
forced_bos_token_id=None,
|
41 |
+
forced_eos_token_id=None,
|
42 |
+
remove_invalid_values=None,
|
43 |
+
synced_gpus=None,
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
device = input_ids.device
|
47 |
+
with torch.no_grad():
|
48 |
+
finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=device)
|
49 |
+
|
50 |
+
if max_new_tokens is None:
|
51 |
+
max_new_tokens = 50 # Default value if not specified
|
52 |
+
for cur_token_idx in range(max_new_tokens):
|
53 |
+
# Sample the next token
|
54 |
+
new_ids = self(
|
55 |
+
input_ids[~finished_generating],
|
56 |
+
attention_mask=attention_mask[~finished_generating] if attention_mask is not None else None,
|
57 |
+
**kwargs
|
58 |
+
)['logits']
|
59 |
+
|
60 |
+
# Mask out the start and end thought tokens so we don't accidentally sample them
|
61 |
+
new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
|
62 |
+
|
63 |
+
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
64 |
+
# Find the index of the last token that is not padding
|
65 |
+
base_answer_ids = input_ids[answer_idx]
|
66 |
+
new_answer_ids = new_ids[list_idx]
|
67 |
+
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
68 |
+
|
69 |
+
new_ids_sampled = torch.multinomial(
|
70 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1)
|
71 |
+
|
72 |
+
# Assign the new id to the last token
|
73 |
+
if last_token_idx + 1 >= len(base_answer_ids):
|
74 |
+
# Add padding everywhere
|
75 |
+
new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
76 |
+
device=device)
|
77 |
+
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
78 |
+
if attention_mask is not None:
|
79 |
+
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
80 |
+
|
81 |
+
if attention_mask is not None:
|
82 |
+
attention_mask[answer_idx, last_token_idx + 1] = 1
|
83 |
+
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
84 |
+
|
85 |
+
if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
|
86 |
+
finished_generating[answer_idx] = 1
|
87 |
+
|
88 |
+
# Check if the end token is generated
|
89 |
+
if new_ids_sampled == self.tokenizer.convert_tokens_to_ids("</s>"):
|
90 |
+
finished_generating[answer_idx] = 1
|
91 |
+
|
92 |
+
if finished_generating.all():
|
93 |
+
break
|
94 |
+
|
95 |
+
if streamer is not None:
|
96 |
+
streamer.put(new_ids_sampled)
|
97 |
+
|
98 |
+
generated_token_ids = input_ids.tolist()
|
99 |
+
return generated_token_ids, attention_mask
|
100 |
+
|
101 |
+
|
102 |
+
def generate(
|
103 |
+
self,
|
104 |
+
input_ids,
|
105 |
+
attention_mask=None,
|
106 |
+
max_new_tokens=None,
|
107 |
+
min_length=None,
|
108 |
+
do_sample=None,
|
109 |
+
early_stopping=None,
|
110 |
+
num_beams=None,
|
111 |
+
temperature=1.1,
|
112 |
+
streamer=None,
|
113 |
+
top_k=None,
|
114 |
+
top_p=None,
|
115 |
+
repetition_penalty=None,
|
116 |
+
bad_words_ids=None,
|
117 |
+
bos_token_id=None,
|
118 |
+
pad_token_id=None,
|
119 |
+
eos_token_id=None,
|
120 |
+
length_penalty=None,
|
121 |
+
no_repeat_ngram_size=None,
|
122 |
+
num_return_sequences=None,
|
123 |
+
decoder_start_token_id=None,
|
124 |
+
use_cache=None,
|
125 |
+
num_beam_groups=None,
|
126 |
+
diversity_penalty=None,
|
127 |
+
prefix_allowed_tokens_fn=None,
|
128 |
+
output_attentions=None,
|
129 |
+
output_hidden_states=None,
|
130 |
+
output_scores=None,
|
131 |
+
return_dict_in_generate=None,
|
132 |
+
forced_bos_token_id=None,
|
133 |
+
forced_eos_token_id=None,
|
134 |
+
remove_invalid_values=None,
|
135 |
+
synced_gpus=None,
|
136 |
+
n_ahead=12,
|
137 |
+
n_ahead_talk=4,
|
138 |
+
merged_talk_heads=True,
|
139 |
+
merged_lm_and_talk_heads=False,
|
140 |
+
merged_lm_and_think_heads=True,
|
141 |
+
use_concat_talk_head=True,
|
142 |
+
use_shallow_think=True,
|
143 |
+
use_shallow_talk=False,
|
144 |
+
use_complex_think_head=False,
|
145 |
+
use_complex_talk_head=True,
|
146 |
+
use_weighted_talk_head=True,
|
147 |
+
trust_remote_code=True,
|
148 |
+
torch_dtype=torch.bfloat16,
|
149 |
+
**model_kwargs,
|
150 |
+
):
|
151 |
+
# Set model attributes
|
152 |
+
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
153 |
+
self.merged_talk_heads = merged_talk_heads
|
154 |
+
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
|
155 |
+
self.merged_lm_and_think_heads = merged_lm_and_think_heads
|
156 |
+
self.use_concat_talk_head = use_concat_talk_head
|
157 |
+
self.use_shallow_think = use_shallow_think
|
158 |
+
self.use_shallow_talk = use_shallow_talk
|
159 |
+
self.use_complex_think_head = use_complex_think_head
|
160 |
+
self.use_complex_talk_head = use_complex_talk_head
|
161 |
+
self.use_weighted_talk_head = use_weighted_talk_head
|
162 |
+
|
163 |
+
# Set model properties
|
164 |
+
self.use_end_thought_token = True
|
165 |
+
self.use_start_thought_token = True
|
166 |
+
self.n_ahead = n_ahead
|
167 |
+
self.n_passes = 1
|
168 |
+
self.eval_mode = True
|
169 |
+
self.first_run = False
|
170 |
+
self.rm_initialized = True
|
171 |
+
self.original_mode = False
|
172 |
+
|
173 |
+
generated_token_ids, attention_mask = custom_generate(
|
174 |
+
self,
|
175 |
+
input_ids=input_ids,
|
176 |
+
attention_mask=attention_mask,
|
177 |
+
max_new_tokens=max_new_tokens,
|
178 |
+
min_length=min_length,
|
179 |
+
do_sample=do_sample,
|
180 |
+
early_stopping=early_stopping,
|
181 |
+
num_beams=num_beams,
|
182 |
+
temperature=temperature,
|
183 |
+
top_k=top_k,
|
184 |
+
top_p=top_p,
|
185 |
+
repetition_penalty=repetition_penalty,
|
186 |
+
bad_words_ids=bad_words_ids,
|
187 |
+
bos_token_id=bos_token_id,
|
188 |
+
pad_token_id=pad_token_id,
|
189 |
+
eos_token_id=eos_token_id,
|
190 |
+
length_penalty=length_penalty,
|
191 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
192 |
+
num_return_sequences=num_return_sequences,
|
193 |
+
decoder_start_token_id=decoder_start_token_id,
|
194 |
+
use_cache=use_cache,
|
195 |
+
num_beam_groups=num_beam_groups,
|
196 |
+
diversity_penalty=diversity_penalty,
|
197 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
198 |
+
output_attentions=output_attentions,
|
199 |
+
output_hidden_states=output_hidden_states,
|
200 |
+
output_scores=output_scores,
|
201 |
+
return_dict_in_generate=return_dict_in_generate,
|
202 |
+
forced_bos_token_id=forced_bos_token_id,
|
203 |
+
forced_eos_token_id=forced_eos_token_id,
|
204 |
+
remove_invalid_values=remove_invalid_values,
|
205 |
+
synced_gpus=synced_gpus,
|
206 |
+
streamer=streamer,
|
207 |
+
**model_kwargs,
|
208 |
+
)
|
209 |
+
|
210 |
+
return generated_token_ids, attention_mask
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.0.dev0"
|
6 |
+
}
|
inference.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
3 |
+
|
4 |
+
def compute_memory_used_pct(device):
|
5 |
+
memory_used = torch.cuda.max_memory_allocated(device) / (1024**3)
|
6 |
+
memory_pct = (
|
7 |
+
memory_used
|
8 |
+
/ (torch.cuda.get_device_properties(device).total_memory / (1024**3))
|
9 |
+
* 100
|
10 |
+
)
|
11 |
+
return memory_pct
|
12 |
+
|
13 |
+
model_path = "./out"
|
14 |
+
|
15 |
+
n_ahead = 8
|
16 |
+
n_ahead_talk = 4
|
17 |
+
merged_talk_heads = True
|
18 |
+
|
19 |
+
# Load the model
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_path,
|
22 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
23 |
+
merged_talk_heads=merged_talk_heads,
|
24 |
+
merged_lm_and_talk_heads=False,
|
25 |
+
merged_lm_and_think_heads=True,
|
26 |
+
use_concat_talk_head=True,
|
27 |
+
use_shallow_think=True,
|
28 |
+
use_shallow_talk=False,
|
29 |
+
use_complex_think_head=False,
|
30 |
+
use_complex_talk_head=True,
|
31 |
+
use_weighted_talk_head=True,
|
32 |
+
trust_remote_code=True,
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
+
device_map="auto",
|
35 |
+
)
|
36 |
+
|
37 |
+
# Load the tokenizer and assign it to the model instance for compatibility
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
39 |
+
model.tokenizer = tokenizer
|
40 |
+
|
41 |
+
model.use_end_thought_token = True
|
42 |
+
model.use_start_thought_token = True
|
43 |
+
model.wandb_enabled = True
|
44 |
+
model.n_ahead = n_ahead
|
45 |
+
model.n_passes = 2
|
46 |
+
model.eval_mode = True
|
47 |
+
model.first_run = False
|
48 |
+
model.kill_after = 100
|
49 |
+
model.rm_initialized = True
|
50 |
+
model.original_mode = False
|
51 |
+
|
52 |
+
# Custom generate function
|
53 |
+
def custom_generate(model, input_ids, attention_mask, max_new_tokens, streamer, **kwargs):
|
54 |
+
with torch.no_grad():
|
55 |
+
finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
|
56 |
+
for cur_token_idx in range(max_new_tokens):
|
57 |
+
# Sample the next token
|
58 |
+
new_ids = model(
|
59 |
+
input_ids[~finished_generating],
|
60 |
+
attention_mask=attention_mask[~finished_generating]
|
61 |
+
)['logits']
|
62 |
+
# Mask out the start and end thought tokens so we don't accidentally sample them
|
63 |
+
new_ids[:, :, model.tokenizer.vocab_size:] = -float("inf")
|
64 |
+
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
65 |
+
# Find the index of the last token that is not padding
|
66 |
+
base_answer_ids = input_ids[answer_idx]
|
67 |
+
new_answer_ids = new_ids[list_idx]
|
68 |
+
last_token_idx = (base_answer_ids != model.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
69 |
+
|
70 |
+
new_ids_sampled = torch.multinomial(
|
71 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / kwargs.get("temperature", 1.0), dim=-1), 1)
|
72 |
+
# Assign the new id to the last token
|
73 |
+
if last_token_idx + 1 >= len(base_answer_ids):
|
74 |
+
# Add padding everywhere
|
75 |
+
new_padding = torch.full((len(input_ids), 1), model.tokenizer.pad_token_id, dtype=torch.long,
|
76 |
+
device=input_ids.device)
|
77 |
+
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
78 |
+
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
79 |
+
attention_mask[answer_idx, last_token_idx + 1] = 1
|
80 |
+
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
81 |
+
if new_ids_sampled == model.tokenizer.eos_token_id or new_ids_sampled == model.tokenizer.bos_token_id or new_ids_sampled == model.tokenizer.pad_token_id:
|
82 |
+
finished_generating[answer_idx] = 1
|
83 |
+
# Check if the end token is generated
|
84 |
+
if new_ids_sampled == model.tokenizer.convert_tokens_to_ids("<|/assistant|>"):
|
85 |
+
finished_generating[answer_idx] = 1
|
86 |
+
if finished_generating.all():
|
87 |
+
break
|
88 |
+
streamer.put(new_ids_sampled)
|
89 |
+
return input_ids, attention_mask
|
90 |
+
|
91 |
+
# Formulate your prompt
|
92 |
+
prompt_template = "[INST] {prompt} [/INST]"
|
93 |
+
|
94 |
+
prompt = "You're standing on the surface of the Earth. "\
|
95 |
+
"You walk one mile south, one mile west and one mile north. "\
|
96 |
+
"You end up exactly where you started. Where are you?"
|
97 |
+
|
98 |
+
# Convert prompt to tokens
|
99 |
+
tokens = tokenizer(prompt_template.format(prompt=prompt), return_tensors='pt').input_ids.to(model.device)
|
100 |
+
|
101 |
+
# Generate an attention mask
|
102 |
+
attention_mask = torch.where(tokens != tokenizer.pad_token_id, torch.ones_like(tokens), torch.zeros_like(tokens)).to(model.device)
|
103 |
+
|
104 |
+
streamer = TextStreamer(tokenizer, skip_prompt=False, skip_special_tokens=True)
|
105 |
+
|
106 |
+
# Generate output using the custom generate function
|
107 |
+
output_ids, _ = custom_generate(
|
108 |
+
model,
|
109 |
+
input_ids=tokens,
|
110 |
+
attention_mask=attention_mask,
|
111 |
+
max_new_tokens=512,
|
112 |
+
streamer=streamer,
|
113 |
+
temperature=0.9,
|
114 |
+
)
|
115 |
+
|
116 |
+
generated_text = ""
|
117 |
+
|
118 |
+
print() # Print a newline after streaming is complete
|
119 |
+
|
120 |
+
# Cleanup if necessary
|
121 |
+
torch.cuda.empty_cache()
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d0220963e92ec181cd2b99c0421eb03ce9b5dfa938b66df39af1122ebb7ba76
|
3 |
+
size 4943211664
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:871f3846be90a6c4515931c237d4efb109b37b2f4061670e10c744db0c659461
|
3 |
+
size 4999819336
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:690edbd65da074f63493d8baf4c9c93a9ee93ad8bec46c8e360595573fa444e6
|
3 |
+
size 4641221080
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14584217600
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"end_embedding": "model-00001-of-00003.safetensors",
|
7 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
8 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
126 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
216 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
225 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
243 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
297 |
+
"model.norm.weight": "model-00003-of-00003.safetensors",
|
298 |
+
"start_embedding": "model-00001-of-00003.safetensors",
|
299 |
+
"talk_head.0.0.bias": "model-00003-of-00003.safetensors",
|
300 |
+
"talk_head.0.0.weight": "model-00003-of-00003.safetensors",
|
301 |
+
"talk_head.0.2.bias": "model-00003-of-00003.safetensors",
|
302 |
+
"talk_head.0.2.weight": "model-00003-of-00003.safetensors",
|
303 |
+
"talk_head.0.4.weight": "model-00003-of-00003.safetensors"
|
304 |
+
}
|
305 |
+
}
|
modeling_quiet.py
ADDED
@@ -0,0 +1,2335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Quiet AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Quiet model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import pdb
|
24 |
+
import warnings
|
25 |
+
from collections import defaultdict
|
26 |
+
from typing import List, Optional, Tuple, Union
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
from torch import nn
|
32 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
33 |
+
from transformers.generation.utils import GenerationMixin
|
34 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList, validate_stopping_criteria
|
35 |
+
from transformers import TextStreamer, AutoTokenizer
|
36 |
+
|
37 |
+
from transformers.activations import ACT2FN
|
38 |
+
from transformers.cache_utils import Cache, DynamicCache
|
39 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
40 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
41 |
+
from transformers.modeling_utils import PreTrainedModel
|
42 |
+
from transformers.utils import (
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
is_flash_attn_2_available,
|
46 |
+
is_flash_attn_greater_or_equal_2_10,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
)
|
50 |
+
from .configuration_quiet import QuietConfig
|
51 |
+
|
52 |
+
import time
|
53 |
+
from typing import Optional, List
|
54 |
+
|
55 |
+
|
56 |
+
if is_flash_attn_2_available():
|
57 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
58 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
59 |
+
|
60 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
61 |
+
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__)
|
64 |
+
|
65 |
+
_CONFIG_FOR_DOC = "QuietConfig"
|
66 |
+
|
67 |
+
|
68 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
69 |
+
# Compute the attention mask correctly
|
70 |
+
bsz, tgt_len = input_shape
|
71 |
+
|
72 |
+
# Create a 4D attention mask from a 2D tensor mask.
|
73 |
+
# The shape of the output attention mask is (batch_size, 1, tgt_len, src_len)
|
74 |
+
# The values are either 0 or 1, where 0 means padding and 1 means non-padding.
|
75 |
+
combined_attention_mask = None
|
76 |
+
if attention_mask is not None:
|
77 |
+
# What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len, src_len)
|
78 |
+
# In this case, we can just use it directly.
|
79 |
+
if attention_mask.dim() == 4:
|
80 |
+
combined_attention_mask = attention_mask
|
81 |
+
# What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len)
|
82 |
+
# In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
83 |
+
elif attention_mask.dim() == 3:
|
84 |
+
expanded_attn_mask = attention_mask[:, None, :, :]
|
85 |
+
combined_attention_mask = expanded_attn_mask
|
86 |
+
# What if attention_mask is not None and has a shape of (batch_size, tgt_len)
|
87 |
+
# In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
88 |
+
elif attention_mask.dim() == 2:
|
89 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
90 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
91 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
92 |
+
if past_key_values_length > 0:
|
93 |
+
attention_mask = attention_mask.to(dtype=torch.long)
|
94 |
+
attention_mask = attention_mask[:, past_key_values_length:]
|
95 |
+
expanded_attn_mask = attention_mask[:, None, None, :]
|
96 |
+
combined_attention_mask = expanded_attn_mask
|
97 |
+
else:
|
98 |
+
raise ValueError(
|
99 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
100 |
+
input_shape, attention_mask.shape
|
101 |
+
)
|
102 |
+
)
|
103 |
+
|
104 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
105 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
106 |
+
# positions we want to attend and -10000.0 for masked positions.
|
107 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
108 |
+
# effectively the same as removing these entirely.
|
109 |
+
if combined_attention_mask is not None:
|
110 |
+
# Ensure the attention mask values are within a reasonable range
|
111 |
+
combined_attention_mask = combined_attention_mask.clamp(min=0, max=1)
|
112 |
+
|
113 |
+
# Convert the attention mask to bfloat16
|
114 |
+
combined_attention_mask = combined_attention_mask.to(torch.bfloat16)
|
115 |
+
|
116 |
+
# Normalize the attention mask values to be between 0 and 1
|
117 |
+
combined_attention_mask = (1.0 - combined_attention_mask) * -10000.0
|
118 |
+
else:
|
119 |
+
combined_attention_mask = torch.zeros(
|
120 |
+
(bsz, 1, tgt_len, tgt_len), dtype=torch.bfloat16, device=inputs_embeds.device
|
121 |
+
)
|
122 |
+
|
123 |
+
return combined_attention_mask
|
124 |
+
|
125 |
+
|
126 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
127 |
+
def _get_unpad_data(attention_mask):
|
128 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
129 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
130 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
131 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
132 |
+
return (
|
133 |
+
indices,
|
134 |
+
cu_seqlens,
|
135 |
+
max_seqlen_in_batch,
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Quiet
|
140 |
+
class QuietRMSNorm(nn.Module):
|
141 |
+
def __init__(self, hidden_size, eps=1e-6):
|
142 |
+
super().__init__()
|
143 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
144 |
+
self.variance_epsilon = eps
|
145 |
+
|
146 |
+
|
147 |
+
def forward(self, hidden_states):
|
148 |
+
input_dtype = hidden_states.dtype
|
149 |
+
hidden_states = hidden_states.to(torch.float32)
|
150 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
151 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
152 |
+
return hidden_states.to(input_dtype) * self.weight.to(hidden_states.device)
|
153 |
+
|
154 |
+
|
155 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Quiet
|
156 |
+
class QuietRotaryEmbedding(nn.Module):
|
157 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
158 |
+
super().__init__()
|
159 |
+
|
160 |
+
self.dim = dim
|
161 |
+
self.max_position_embeddings = max_position_embeddings
|
162 |
+
self.base = base
|
163 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
164 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
165 |
+
|
166 |
+
# Build here to make `torch.jit.trace` work.
|
167 |
+
self._set_cos_sin_cache(
|
168 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
169 |
+
)
|
170 |
+
|
171 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
172 |
+
self.max_seq_len_cached = seq_len
|
173 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
174 |
+
|
175 |
+
freqs = torch.outer(t, self.inv_freq)
|
176 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
177 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
178 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
179 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
180 |
+
|
181 |
+
def forward(self, x, seq_len=None):
|
182 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
183 |
+
if seq_len > self.max_seq_len_cached:
|
184 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
185 |
+
|
186 |
+
return (
|
187 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
188 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
189 |
+
)
|
190 |
+
|
191 |
+
|
192 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
193 |
+
def rotate_half(x):
|
194 |
+
"""Rotates half the hidden dims of the input."""
|
195 |
+
x1 = x[..., : x.shape[-1] // 2]
|
196 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
197 |
+
return torch.cat((-x2, x1), dim=-1)
|
198 |
+
|
199 |
+
|
200 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
201 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
202 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
203 |
+
Args:
|
204 |
+
q (`torch.Tensor`): The query tensor.
|
205 |
+
k (`torch.Tensor`): The key tensor.
|
206 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
207 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
208 |
+
position_ids (`torch.Tensor`):
|
209 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
210 |
+
used to pass offsetted position ids when working with a KV-cache.
|
211 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
212 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
213 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
214 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
215 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
216 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
217 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
218 |
+
Returns:
|
219 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
220 |
+
"""
|
221 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
222 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
223 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
224 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
225 |
+
return q_embed, k_embed
|
226 |
+
|
227 |
+
|
228 |
+
class QuietMLP(nn.Module):
|
229 |
+
def __init__(self, config):
|
230 |
+
super().__init__()
|
231 |
+
self.config = config
|
232 |
+
self.hidden_size = config.hidden_size
|
233 |
+
self.intermediate_size = config.intermediate_size
|
234 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
235 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
236 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
237 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
238 |
+
|
239 |
+
def forward(self, x):
|
240 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
241 |
+
|
242 |
+
|
243 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
244 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
245 |
+
"""
|
246 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
247 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
248 |
+
"""
|
249 |
+
|
250 |
+
# pdb.set_trace()
|
251 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
252 |
+
if n_rep == 1:
|
253 |
+
return hidden_states
|
254 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
255 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
256 |
+
|
257 |
+
|
258 |
+
class QuietAttention(nn.Module):
|
259 |
+
"""
|
260 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
261 |
+
and "Generating Long Sequences with Sparse Transformers".
|
262 |
+
"""
|
263 |
+
|
264 |
+
def __init__(self, config: QuietConfig, layer_idx: Optional[int] = None):
|
265 |
+
super().__init__()
|
266 |
+
self.config = config
|
267 |
+
self.layer_idx = layer_idx
|
268 |
+
if layer_idx is None:
|
269 |
+
logger.warning_once(
|
270 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
271 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
272 |
+
"when creating this class."
|
273 |
+
)
|
274 |
+
|
275 |
+
self.hidden_size = config.hidden_size
|
276 |
+
self.num_heads = config.num_attention_heads
|
277 |
+
self.head_dim = self.hidden_size // self.num_heads
|
278 |
+
self.num_key_value_heads = config.num_key_value_heads
|
279 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
280 |
+
self.max_position_embeddings = config.max_position_embeddings
|
281 |
+
self.rope_theta = config.rope_theta
|
282 |
+
self.is_causal = True
|
283 |
+
self.attention_dropout = config.attention_dropout
|
284 |
+
self._attn_implementation = config._attn_implementation
|
285 |
+
|
286 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
287 |
+
raise ValueError(
|
288 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
289 |
+
f" and `num_heads`: {self.num_heads})."
|
290 |
+
)
|
291 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
292 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
293 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
294 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
295 |
+
|
296 |
+
self.rotary_emb = QuietRotaryEmbedding(
|
297 |
+
self.head_dim,
|
298 |
+
max_position_embeddings=self.max_position_embeddings,
|
299 |
+
base=self.rope_theta,
|
300 |
+
)
|
301 |
+
|
302 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
303 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
304 |
+
|
305 |
+
def forward(
|
306 |
+
self,
|
307 |
+
hidden_states: torch.Tensor,
|
308 |
+
attention_mask: Optional[torch.Tensor] = None,
|
309 |
+
position_ids: Optional[torch.LongTensor] = None,
|
310 |
+
past_key_value: Optional[Cache] = None,
|
311 |
+
output_attentions: bool = False,
|
312 |
+
use_cache: bool = False,
|
313 |
+
**kwargs,
|
314 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
315 |
+
if "padding_mask" in kwargs:
|
316 |
+
warnings.warn(
|
317 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
318 |
+
)
|
319 |
+
bsz, q_len, _ = hidden_states.size()
|
320 |
+
|
321 |
+
query_states = self.q_proj(hidden_states)
|
322 |
+
key_states = self.k_proj(hidden_states)
|
323 |
+
value_states = self.v_proj(hidden_states)
|
324 |
+
|
325 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
326 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
327 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
328 |
+
|
329 |
+
kv_seq_len = key_states.shape[-2]
|
330 |
+
if past_key_value is not None:
|
331 |
+
if self.layer_idx is None:
|
332 |
+
raise ValueError(
|
333 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
334 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
335 |
+
"with a layer index."
|
336 |
+
)
|
337 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
338 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
339 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
340 |
+
|
341 |
+
if past_key_value is not None:
|
342 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
343 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
344 |
+
|
345 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
346 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
347 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
348 |
+
|
349 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
350 |
+
|
351 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
352 |
+
raise ValueError(
|
353 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
354 |
+
f" {attn_weights.size()}"
|
355 |
+
)
|
356 |
+
if self._attn_implementation == "flash_attention_2":
|
357 |
+
# Prepare attention mask for flash-attn
|
358 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
359 |
+
elif self._attn_implementation == "sdpa":
|
360 |
+
# Prepare attention mask for SDPA
|
361 |
+
if attention_mask is None or attention_mask.dim() == 2:
|
362 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
363 |
+
attention_mask,
|
364 |
+
(batch_size, seq_length),
|
365 |
+
inputs_embeds,
|
366 |
+
past_key_values_length,
|
367 |
+
sliding_window=self.config.sliding_window,
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
# Prepare attention mask for other implementations
|
371 |
+
if attention_mask is None or attention_mask.dim() == 2:
|
372 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
373 |
+
attention_mask,
|
374 |
+
(batch_size, seq_length),
|
375 |
+
inputs_embeds,
|
376 |
+
past_key_values_length,
|
377 |
+
sliding_window=self.config.sliding_window,
|
378 |
+
)
|
379 |
+
|
380 |
+
if attention_mask is not None:
|
381 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
382 |
+
raise ValueError(
|
383 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
384 |
+
)
|
385 |
+
|
386 |
+
attn_weights = attn_weights + attention_mask
|
387 |
+
|
388 |
+
# upcast attention to fp32
|
389 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
390 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
391 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
392 |
+
|
393 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
394 |
+
raise ValueError(
|
395 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
396 |
+
f" {attn_output.size()}"
|
397 |
+
)
|
398 |
+
|
399 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
400 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
401 |
+
|
402 |
+
attn_output = self.o_proj(attn_output)
|
403 |
+
|
404 |
+
if not output_attentions:
|
405 |
+
attn_weights = None
|
406 |
+
|
407 |
+
return attn_output, attn_weights, past_key_value
|
408 |
+
|
409 |
+
|
410 |
+
class QuietFlashAttention2(QuietAttention):
|
411 |
+
"""
|
412 |
+
Quiet flash attention module. This module inherits from `QuietAttention` as the weights of the module stays
|
413 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
414 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
415 |
+
"""
|
416 |
+
|
417 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
418 |
+
def __init__(self, *args, **kwargs):
|
419 |
+
super().__init__(*args, **kwargs)
|
420 |
+
|
421 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
422 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
423 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
424 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
425 |
+
|
426 |
+
def forward(
|
427 |
+
self,
|
428 |
+
hidden_states: torch.Tensor,
|
429 |
+
attention_mask: Optional[torch.Tensor] = None,
|
430 |
+
position_ids: Optional[torch.LongTensor] = None,
|
431 |
+
past_key_value: Optional[Cache] = None,
|
432 |
+
output_attentions: bool = False,
|
433 |
+
use_cache: bool = False,
|
434 |
+
**kwargs,
|
435 |
+
):
|
436 |
+
if "padding_mask" in kwargs:
|
437 |
+
warnings.warn(
|
438 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
439 |
+
)
|
440 |
+
|
441 |
+
# overwrite attention_mask with padding_mask
|
442 |
+
attention_mask = kwargs.pop("padding_mask")
|
443 |
+
bsz, q_len, _ = hidden_states.size()
|
444 |
+
|
445 |
+
query_states = self.q_proj(hidden_states)
|
446 |
+
key_states = self.k_proj(hidden_states)
|
447 |
+
value_states = self.v_proj(hidden_states)
|
448 |
+
|
449 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
450 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
451 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
452 |
+
|
453 |
+
kv_seq_len = key_states.shape[-2]
|
454 |
+
if past_key_value is not None:
|
455 |
+
if self.layer_idx is None:
|
456 |
+
raise ValueError(
|
457 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
458 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
459 |
+
"with a layer index."
|
460 |
+
)
|
461 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
462 |
+
|
463 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
464 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
465 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
466 |
+
|
467 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
468 |
+
|
469 |
+
use_sliding_windows = (
|
470 |
+
_flash_supports_window_size
|
471 |
+
and getattr(self.config, "sliding_window", None) is not None
|
472 |
+
and kv_seq_len > self.config.sliding_window
|
473 |
+
)
|
474 |
+
|
475 |
+
if not _flash_supports_window_size:
|
476 |
+
logger.warning_once(
|
477 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
478 |
+
" make sure to upgrade flash-attn library."
|
479 |
+
)
|
480 |
+
|
481 |
+
if past_key_value is not None:
|
482 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
483 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
484 |
+
if (
|
485 |
+
getattr(self.config, "sliding_window", None) is not None
|
486 |
+
and kv_seq_len > self.config.sliding_window
|
487 |
+
and cache_has_contents
|
488 |
+
):
|
489 |
+
slicing_tokens = 1 - self.config.sliding_window
|
490 |
+
|
491 |
+
past_key = past_key_value[self.layer_idx][0]
|
492 |
+
past_value = past_key_value[self.layer_idx][1]
|
493 |
+
|
494 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
495 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
496 |
+
|
497 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
498 |
+
raise ValueError(
|
499 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
500 |
+
f" {past_key.shape}"
|
501 |
+
)
|
502 |
+
|
503 |
+
if attention_mask is not None:
|
504 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
505 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
506 |
+
|
507 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
508 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
509 |
+
|
510 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
511 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
512 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
513 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
514 |
+
|
515 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
516 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
517 |
+
# cast them back in float16 just to be sure everything works as expected.
|
518 |
+
input_dtype = query_states.dtype
|
519 |
+
if input_dtype == torch.float32:
|
520 |
+
if torch.is_autocast_enabled():
|
521 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
522 |
+
# Handle the case where the model is quantized
|
523 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
524 |
+
target_dtype = self.config._pre_quantization_dtype
|
525 |
+
else:
|
526 |
+
target_dtype = self.q_proj.weight.dtype
|
527 |
+
|
528 |
+
logger.warning_once(
|
529 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
530 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
531 |
+
f" {target_dtype}."
|
532 |
+
)
|
533 |
+
|
534 |
+
query_states = query_states.to(target_dtype)
|
535 |
+
key_states = key_states.to(target_dtype)
|
536 |
+
value_states = value_states.to(target_dtype)
|
537 |
+
|
538 |
+
# Reashape to the expected shape for Flash Attention
|
539 |
+
query_states = query_states.transpose(1, 2)
|
540 |
+
key_states = key_states.transpose(1, 2)
|
541 |
+
value_states = value_states.transpose(1, 2)
|
542 |
+
|
543 |
+
attn_output = self._flash_attention_forward(
|
544 |
+
query_states,
|
545 |
+
key_states,
|
546 |
+
value_states,
|
547 |
+
attention_mask,
|
548 |
+
q_len,
|
549 |
+
dropout=dropout_rate,
|
550 |
+
use_sliding_windows=use_sliding_windows,
|
551 |
+
)
|
552 |
+
|
553 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
554 |
+
attn_output = self.o_proj(attn_output)
|
555 |
+
|
556 |
+
if not output_attentions:
|
557 |
+
attn_weights = None
|
558 |
+
|
559 |
+
return attn_output, attn_weights, past_key_value
|
560 |
+
|
561 |
+
def _flash_attention_forward(
|
562 |
+
self,
|
563 |
+
query_states,
|
564 |
+
key_states,
|
565 |
+
value_states,
|
566 |
+
attention_mask,
|
567 |
+
query_length,
|
568 |
+
dropout=0.0,
|
569 |
+
softmax_scale=None,
|
570 |
+
use_sliding_windows=False,
|
571 |
+
):
|
572 |
+
"""
|
573 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
574 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
575 |
+
Args:
|
576 |
+
query_states (`torch.Tensor`):
|
577 |
+
Input query states to be passed to Flash Attention API
|
578 |
+
key_states (`torch.Tensor`):
|
579 |
+
Input key states to be passed to Flash Attention API
|
580 |
+
value_states (`torch.Tensor`):
|
581 |
+
Input value states to be passed to Flash Attention API
|
582 |
+
attention_mask (`torch.Tensor`):
|
583 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
584 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
585 |
+
dropout (`int`, *optional*):
|
586 |
+
Attention dropout
|
587 |
+
softmax_scale (`float`, *optional*):
|
588 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
589 |
+
use_sliding_windows (`bool`, *optional*):
|
590 |
+
Whether to activate sliding window attention.
|
591 |
+
"""
|
592 |
+
if not self._flash_attn_uses_top_left_mask:
|
593 |
+
causal = self.is_causal
|
594 |
+
else:
|
595 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
596 |
+
causal = self.is_causal and query_length != 1
|
597 |
+
|
598 |
+
# Ensure attention_mask has the correct shape and values
|
599 |
+
if attention_mask is not None:
|
600 |
+
if attention_mask.dim() == 4:
|
601 |
+
# Convert 4D attention mask to 2D
|
602 |
+
attention_mask = attention_mask.squeeze(1).squeeze(1)
|
603 |
+
elif attention_mask.dim() != 2:
|
604 |
+
raise ValueError(
|
605 |
+
f"Invalid attention mask dimension: {attention_mask.dim()}. Expected 2D or 4D mask."
|
606 |
+
)
|
607 |
+
|
608 |
+
# Ensure attention_mask has values of 0 and 1
|
609 |
+
attention_mask = attention_mask.to(torch.bool).to(torch.int32)
|
610 |
+
|
611 |
+
# Contains at least one padding token in the sequence
|
612 |
+
if attention_mask is not None:
|
613 |
+
batch_size = query_states.shape[0]
|
614 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
615 |
+
query_states, key_states, value_states, attention_mask, query_length
|
616 |
+
)
|
617 |
+
|
618 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
619 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
620 |
+
|
621 |
+
if not use_sliding_windows:
|
622 |
+
attn_output_unpad = flash_attn_varlen_func(
|
623 |
+
query_states,
|
624 |
+
key_states,
|
625 |
+
value_states,
|
626 |
+
cu_seqlens_q=cu_seqlens_q,
|
627 |
+
cu_seqlens_k=cu_seqlens_k,
|
628 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
629 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
630 |
+
dropout_p=dropout,
|
631 |
+
softmax_scale=softmax_scale,
|
632 |
+
causal=causal,
|
633 |
+
)
|
634 |
+
else:
|
635 |
+
attn_output_unpad = flash_attn_varlen_func(
|
636 |
+
query_states,
|
637 |
+
key_states,
|
638 |
+
value_states,
|
639 |
+
cu_seqlens_q=cu_seqlens_q,
|
640 |
+
cu_seqlens_k=cu_seqlens_k,
|
641 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
642 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
643 |
+
dropout_p=dropout,
|
644 |
+
softmax_scale=softmax_scale,
|
645 |
+
causal=causal,
|
646 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
647 |
+
)
|
648 |
+
|
649 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
650 |
+
else:
|
651 |
+
if not use_sliding_windows:
|
652 |
+
attn_output = flash_attn_func(
|
653 |
+
query_states,
|
654 |
+
key_states,
|
655 |
+
value_states,
|
656 |
+
dropout,
|
657 |
+
softmax_scale=softmax_scale,
|
658 |
+
causal=causal,
|
659 |
+
)
|
660 |
+
else:
|
661 |
+
attn_output = flash_attn_func(
|
662 |
+
query_states,
|
663 |
+
key_states,
|
664 |
+
value_states,
|
665 |
+
dropout,
|
666 |
+
softmax_scale=softmax_scale,
|
667 |
+
causal=causal,
|
668 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
669 |
+
)
|
670 |
+
|
671 |
+
return attn_output
|
672 |
+
|
673 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
674 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
675 |
+
|
676 |
+
# On the first iteration we need to properly re-create the padding mask
|
677 |
+
# by slicing it on the proper place
|
678 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
679 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
680 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
681 |
+
|
682 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
683 |
+
|
684 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
685 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
686 |
+
|
687 |
+
if query_length == kv_seq_len:
|
688 |
+
query_layer = index_first_axis(
|
689 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
690 |
+
)
|
691 |
+
cu_seqlens_q = cu_seqlens_k
|
692 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
693 |
+
indices_q = indices_k
|
694 |
+
elif query_length == 1:
|
695 |
+
max_seqlen_in_batch_q = 1
|
696 |
+
cu_seqlens_q = torch.arange(
|
697 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
698 |
+
) # There is a memcpy here, that is very bad.
|
699 |
+
indices_q = cu_seqlens_q[:-1]
|
700 |
+
query_layer = query_layer.squeeze(1)
|
701 |
+
else:
|
702 |
+
# The -q_len: slice assumes left padding.
|
703 |
+
attention_mask = attention_mask[:, -query_length:]
|
704 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
705 |
+
|
706 |
+
return (
|
707 |
+
query_layer,
|
708 |
+
key_layer,
|
709 |
+
value_layer,
|
710 |
+
indices_q,
|
711 |
+
(cu_seqlens_q, cu_seqlens_k),
|
712 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
713 |
+
)
|
714 |
+
|
715 |
+
|
716 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Quiet
|
717 |
+
class QuietSdpaAttention(QuietAttention):
|
718 |
+
"""
|
719 |
+
Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
720 |
+
`QuietAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
721 |
+
SDPA API.
|
722 |
+
"""
|
723 |
+
|
724 |
+
# Adapted from QuietAttention.forward
|
725 |
+
def forward(
|
726 |
+
self,
|
727 |
+
hidden_states: torch.Tensor,
|
728 |
+
attention_mask: Optional[torch.Tensor] = None,
|
729 |
+
position_ids: Optional[torch.LongTensor] = None,
|
730 |
+
past_key_value: Optional[Cache] = None,
|
731 |
+
output_attentions: bool = False,
|
732 |
+
use_cache: bool = False,
|
733 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
734 |
+
if output_attentions:
|
735 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
736 |
+
logger.warning_once(
|
737 |
+
"QuietModel is using QuietSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
738 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
739 |
+
)
|
740 |
+
return super().forward(
|
741 |
+
hidden_states=hidden_states,
|
742 |
+
attention_mask=attention_mask,
|
743 |
+
position_ids=position_ids,
|
744 |
+
past_key_value=past_key_value,
|
745 |
+
output_attentions=output_attentions,
|
746 |
+
use_cache=use_cache,
|
747 |
+
)
|
748 |
+
bsz, q_len, _ = hidden_states.size()
|
749 |
+
|
750 |
+
query_states = self.q_proj(hidden_states)
|
751 |
+
key_states = self.k_proj(hidden_states)
|
752 |
+
value_states = self.v_proj(hidden_states)
|
753 |
+
|
754 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
755 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
756 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
757 |
+
|
758 |
+
kv_seq_len = key_states.shape[-2]
|
759 |
+
if past_key_value is not None:
|
760 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
761 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
762 |
+
|
763 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
764 |
+
|
765 |
+
if past_key_value is not None:
|
766 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
767 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
768 |
+
|
769 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
770 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
771 |
+
|
772 |
+
if attention_mask is not None:
|
773 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
774 |
+
raise ValueError(
|
775 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
776 |
+
)
|
777 |
+
attention_mask = attention_mask.to(query_states.dtype)
|
778 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
779 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
780 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
781 |
+
query_states = query_states.contiguous()
|
782 |
+
key_states = key_states.contiguous()
|
783 |
+
value_states = value_states.contiguous()
|
784 |
+
|
785 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
786 |
+
query_states,
|
787 |
+
key_states,
|
788 |
+
value_states,
|
789 |
+
attn_mask=attention_mask.to(query_states.device) if attention_mask is not None else None,
|
790 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
791 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
792 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
793 |
+
)
|
794 |
+
|
795 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
796 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
797 |
+
|
798 |
+
attn_output = self.o_proj(attn_output)
|
799 |
+
|
800 |
+
return attn_output, None, past_key_value
|
801 |
+
|
802 |
+
|
803 |
+
QUIET_ATTENTION_CLASSES = {
|
804 |
+
"eager": QuietAttention,
|
805 |
+
"flash_attention_2": QuietFlashAttention2,
|
806 |
+
"sdpa": QuietSdpaAttention,
|
807 |
+
}
|
808 |
+
|
809 |
+
|
810 |
+
class QuietDecoderLayer(nn.Module):
|
811 |
+
def __init__(self, config: QuietConfig, layer_idx: int):
|
812 |
+
super().__init__()
|
813 |
+
self.hidden_size = config.hidden_size
|
814 |
+
|
815 |
+
self.self_attn = QUIET_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
816 |
+
|
817 |
+
self.mlp = QuietMLP(config)
|
818 |
+
self.input_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
819 |
+
self.post_attention_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
820 |
+
|
821 |
+
def forward(
|
822 |
+
self,
|
823 |
+
hidden_states: torch.Tensor,
|
824 |
+
attention_mask: Optional[torch.Tensor] = None,
|
825 |
+
position_ids: Optional[torch.LongTensor] = None,
|
826 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
827 |
+
output_attentions: Optional[bool] = False,
|
828 |
+
use_cache: Optional[bool] = False,
|
829 |
+
**kwargs,
|
830 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
831 |
+
if "padding_mask" in kwargs:
|
832 |
+
warnings.warn(
|
833 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
834 |
+
)
|
835 |
+
"""
|
836 |
+
Args:
|
837 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
838 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
839 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
840 |
+
output_attentions (`bool`, *optional*):
|
841 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
842 |
+
returned tensors for more detail.
|
843 |
+
use_cache (`bool`, *optional*):
|
844 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
845 |
+
(see `past_key_values`).
|
846 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
847 |
+
"""
|
848 |
+
|
849 |
+
residual = hidden_states
|
850 |
+
|
851 |
+
hidden_states = self.input_layernorm(hidden_states)
|
852 |
+
|
853 |
+
# Self Attention
|
854 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
855 |
+
hidden_states=hidden_states,
|
856 |
+
attention_mask=attention_mask,
|
857 |
+
position_ids=position_ids,
|
858 |
+
past_key_value=past_key_value,
|
859 |
+
output_attentions=output_attentions,
|
860 |
+
use_cache=use_cache,
|
861 |
+
)
|
862 |
+
hidden_states = residual.to(hidden_states.device) + hidden_states
|
863 |
+
|
864 |
+
# Fully Connected
|
865 |
+
residual = hidden_states
|
866 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
867 |
+
hidden_states = self.mlp(hidden_states)
|
868 |
+
hidden_states = residual + hidden_states
|
869 |
+
|
870 |
+
outputs = (hidden_states,)
|
871 |
+
|
872 |
+
if output_attentions:
|
873 |
+
outputs += (self_attn_weights,)
|
874 |
+
|
875 |
+
if use_cache:
|
876 |
+
outputs += (present_key_value,)
|
877 |
+
|
878 |
+
return outputs
|
879 |
+
|
880 |
+
|
881 |
+
QUIET_START_DOCSTRING = r"""
|
882 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
883 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
884 |
+
etc.)
|
885 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
886 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
887 |
+
and behavior.
|
888 |
+
Parameters:
|
889 |
+
config ([`QuietConfig`]):
|
890 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
891 |
+
load the weights associated with the model, only the configuration. Check out the
|
892 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
893 |
+
"""
|
894 |
+
|
895 |
+
|
896 |
+
@add_start_docstrings(
|
897 |
+
"The bare Quiet Model outputting raw hidden-states without any specific head on top.",
|
898 |
+
QUIET_START_DOCSTRING,
|
899 |
+
)
|
900 |
+
class QuietPreTrainedModel(PreTrainedModel):
|
901 |
+
config_class = QuietConfig
|
902 |
+
base_model_prefix = "model"
|
903 |
+
supports_gradient_checkpointing = True
|
904 |
+
_no_split_modules = ["QuietDecoderLayer"]
|
905 |
+
_skip_keys_device_placement = "past_key_values"
|
906 |
+
_supports_flash_attn_2 = True
|
907 |
+
_supports_sdpa = True
|
908 |
+
_supports_cache_class = True
|
909 |
+
|
910 |
+
def _init_weights(self, module):
|
911 |
+
std = self.config.initializer_range
|
912 |
+
if isinstance(module, nn.Linear):
|
913 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
914 |
+
if module.bias is not None:
|
915 |
+
module.bias.data.zero_()
|
916 |
+
elif isinstance(module, nn.Embedding):
|
917 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
918 |
+
if module.padding_idx is not None:
|
919 |
+
module.weight.data[module.padding_idx].zero_()
|
920 |
+
|
921 |
+
|
922 |
+
QUIET_INPUTS_DOCSTRING = r"""
|
923 |
+
Args:
|
924 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
925 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
926 |
+
it.
|
927 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
928 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
929 |
+
[What are input IDs?](../glossary#input-ids)
|
930 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
931 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
932 |
+
- 1 for tokens that are **not masked**,
|
933 |
+
- 0 for tokens that are **masked**.
|
934 |
+
[What are attention masks?](../glossary#attention-mask)
|
935 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
936 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
937 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
938 |
+
`past_key_values`).
|
939 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
940 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
941 |
+
information on the default strategy.
|
942 |
+
- 1 indicates the head is **not masked**,
|
943 |
+
- 0 indicates the head is **masked**.
|
944 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
945 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
946 |
+
config.n_positions - 1]`.
|
947 |
+
[What are position IDs?](../glossary#position-ids)
|
948 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
949 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
950 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
951 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
952 |
+
Two formats are allowed:
|
953 |
+
- a [`~cache_utils.Cache`] instance;
|
954 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
955 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
956 |
+
cache format.
|
957 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
958 |
+
legacy cache format will be returned.
|
959 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
960 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
961 |
+
of shape `(batch_size, sequence_length)`.
|
962 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
963 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
964 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
965 |
+
model's internal embedding lookup matrix.
|
966 |
+
use_cache (`bool`, *optional*):
|
967 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
968 |
+
`past_key_values`).
|
969 |
+
output_attentions (`bool`, *optional*):
|
970 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
971 |
+
tensors for more detail.
|
972 |
+
output_hidden_states (`bool`, *optional*):
|
973 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
974 |
+
more detail.
|
975 |
+
return_dict (`bool`, *optional*):
|
976 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
977 |
+
"""
|
978 |
+
|
979 |
+
|
980 |
+
@add_start_docstrings(
|
981 |
+
"The bare Quiet Model outputting raw hidden-states without any specific head on top.",
|
982 |
+
QUIET_START_DOCSTRING,
|
983 |
+
)
|
984 |
+
class QuietModel(QuietPreTrainedModel):
|
985 |
+
"""
|
986 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`QuietDecoderLayer`]
|
987 |
+
Args:
|
988 |
+
config: QuietConfig
|
989 |
+
"""
|
990 |
+
|
991 |
+
def __init__(self, config: QuietConfig):
|
992 |
+
super().__init__(config)
|
993 |
+
self.padding_idx = config.pad_token_id
|
994 |
+
self.vocab_size = config.vocab_size
|
995 |
+
|
996 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
997 |
+
self.layers = nn.ModuleList(
|
998 |
+
[QuietDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
999 |
+
)
|
1000 |
+
self._attn_implementation = config._attn_implementation
|
1001 |
+
self.norm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1002 |
+
|
1003 |
+
self.gradient_checkpointing = False
|
1004 |
+
# Initialize weights and apply final processing
|
1005 |
+
self.post_init()
|
1006 |
+
|
1007 |
+
def get_input_embeddings(self):
|
1008 |
+
return self.embed_tokens
|
1009 |
+
|
1010 |
+
def set_input_embeddings(self, value):
|
1011 |
+
self.embed_tokens = value
|
1012 |
+
|
1013 |
+
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1014 |
+
def forward(
|
1015 |
+
self,
|
1016 |
+
input_ids: torch.LongTensor = None,
|
1017 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1018 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1019 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1020 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1021 |
+
use_cache: Optional[bool] = None,
|
1022 |
+
output_attentions: Optional[bool] = None,
|
1023 |
+
output_hidden_states: Optional[bool] = None,
|
1024 |
+
return_dict: Optional[bool] = None,
|
1025 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1026 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1027 |
+
output_hidden_states = (
|
1028 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1029 |
+
)
|
1030 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1031 |
+
|
1032 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1033 |
+
|
1034 |
+
# retrieve input_ids and inputs_embeds
|
1035 |
+
if input_ids is not None and inputs_embeds is not None:
|
1036 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1037 |
+
elif input_ids is not None:
|
1038 |
+
batch_size, seq_length = input_ids.shape
|
1039 |
+
elif inputs_embeds is not None:
|
1040 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1041 |
+
else:
|
1042 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1043 |
+
|
1044 |
+
if self.gradient_checkpointing and self.training:
|
1045 |
+
if use_cache:
|
1046 |
+
logger.warning_once(
|
1047 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1048 |
+
)
|
1049 |
+
use_cache = False
|
1050 |
+
|
1051 |
+
past_key_values_length = 0
|
1052 |
+
|
1053 |
+
if use_cache:
|
1054 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1055 |
+
if use_legacy_cache:
|
1056 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1057 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1058 |
+
|
1059 |
+
if position_ids is None:
|
1060 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1061 |
+
position_ids = torch.arange(
|
1062 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1063 |
+
)
|
1064 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1065 |
+
else:
|
1066 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1067 |
+
|
1068 |
+
if inputs_embeds is None:
|
1069 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1070 |
+
|
1071 |
+
if self._attn_implementation == "flash_attention_2":
|
1072 |
+
# 2d mask is passed through the layers
|
1073 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1074 |
+
elif self._attn_implementation == "sdpa" and not output_attentions and attention_mask.dim() == 2 and False:
|
1075 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1076 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1077 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1078 |
+
attention_mask,
|
1079 |
+
(batch_size, seq_length),
|
1080 |
+
inputs_embeds,
|
1081 |
+
past_key_values_length,
|
1082 |
+
)
|
1083 |
+
elif attention_mask is None or attention_mask.dim() == 2:
|
1084 |
+
# 4d mask is passed through the layers
|
1085 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1086 |
+
attention_mask,
|
1087 |
+
(batch_size, seq_length),
|
1088 |
+
inputs_embeds,
|
1089 |
+
past_key_values_length,
|
1090 |
+
sliding_window=self.config.sliding_window,
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
hidden_states = inputs_embeds
|
1094 |
+
|
1095 |
+
# decoder layers
|
1096 |
+
all_hidden_states = () if output_hidden_states else None
|
1097 |
+
all_self_attns = () if output_attentions else None
|
1098 |
+
next_decoder_cache = None
|
1099 |
+
|
1100 |
+
for decoder_layer in self.layers:
|
1101 |
+
if output_hidden_states:
|
1102 |
+
all_hidden_states += (hidden_states,)
|
1103 |
+
|
1104 |
+
if self.gradient_checkpointing and self.training:
|
1105 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1106 |
+
decoder_layer.__call__,
|
1107 |
+
hidden_states,
|
1108 |
+
attention_mask,
|
1109 |
+
position_ids,
|
1110 |
+
past_key_values,
|
1111 |
+
output_attentions,
|
1112 |
+
use_cache,
|
1113 |
+
)
|
1114 |
+
else:
|
1115 |
+
layer_outputs = decoder_layer(
|
1116 |
+
hidden_states,
|
1117 |
+
attention_mask=attention_mask,
|
1118 |
+
position_ids=position_ids,
|
1119 |
+
past_key_value=past_key_values,
|
1120 |
+
output_attentions=output_attentions,
|
1121 |
+
use_cache=use_cache,
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
hidden_states = layer_outputs[0]
|
1125 |
+
|
1126 |
+
if use_cache:
|
1127 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1128 |
+
|
1129 |
+
if output_attentions:
|
1130 |
+
all_self_attns += (layer_outputs[1],)
|
1131 |
+
|
1132 |
+
hidden_states = self.norm(hidden_states)
|
1133 |
+
|
1134 |
+
# add hidden states from the last decoder layer
|
1135 |
+
if output_hidden_states:
|
1136 |
+
all_hidden_states += (hidden_states,)
|
1137 |
+
|
1138 |
+
next_cache = None
|
1139 |
+
if use_cache:
|
1140 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1141 |
+
|
1142 |
+
if not return_dict:
|
1143 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1144 |
+
return BaseModelOutputWithPast(
|
1145 |
+
last_hidden_state=hidden_states,
|
1146 |
+
past_key_values=next_cache,
|
1147 |
+
hidden_states=all_hidden_states,
|
1148 |
+
attentions=all_self_attns,
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
def nonzero_mean(x, axis=None):
|
1152 |
+
if axis is not None:
|
1153 |
+
return x.sum(axis) / (x != 0).sum(axis)
|
1154 |
+
return x.sum() / (x != 0).sum()
|
1155 |
+
|
1156 |
+
def loss_mean(x):
|
1157 |
+
return x.sum() / (x != 0).sum()
|
1158 |
+
|
1159 |
+
class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
1160 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1161 |
+
|
1162 |
+
def __init__(self, config):
|
1163 |
+
super().__init__(config)
|
1164 |
+
self.model = QuietModel(config)
|
1165 |
+
self.vocab_size = config.vocab_size
|
1166 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1167 |
+
# self.router_aux_loss_coef = config.router_aux_loss_coef
|
1168 |
+
# self.num_experts = config.num_experts
|
1169 |
+
# self.num_experts_per_tok = config.num_experts_per_tok
|
1170 |
+
self.max_thoughts = config.max_thoughts
|
1171 |
+
self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
|
1172 |
+
self.use_concat_talk_head = config.use_concat_talk_head
|
1173 |
+
self.use_shallow_talk = config.use_shallow_talk
|
1174 |
+
self.use_complex_talk_head = config.use_complex_talk_head
|
1175 |
+
self.use_weighted_talk_head = config.use_weighted_talk_head
|
1176 |
+
# the weighted head will output a single value, so it can't be passed to the lm head
|
1177 |
+
assert not (self.use_weighted_talk_head and self.use_shallow_talk)
|
1178 |
+
|
1179 |
+
self.n_ahead = 1
|
1180 |
+
self.n_ahead_talk = 1
|
1181 |
+
self.n_passes = 1
|
1182 |
+
self.n_tokens_print = 1
|
1183 |
+
self.gradient_accumulation_steps = 1
|
1184 |
+
self.training_steps = 0
|
1185 |
+
self.tokenizer = AutoTokenizer.from_pretrained("Crystalcareai/Quiet-Star-Custom")
|
1186 |
+
self.start_token_id = None
|
1187 |
+
self.end_token_id = None
|
1188 |
+
self.rm_initialized = False
|
1189 |
+
self.residual_talk_head = True
|
1190 |
+
self.thought_init_std_scale = 1e-2
|
1191 |
+
|
1192 |
+
self.final_only_mode = False
|
1193 |
+
self.first_and_last_mode = True
|
1194 |
+
self.first_only = False
|
1195 |
+
self.original_loss_weight = 0.5
|
1196 |
+
|
1197 |
+
self.cumulative_residual = False
|
1198 |
+
self.clever_residual = False
|
1199 |
+
self.skip_residual = False
|
1200 |
+
self.no_residual = True
|
1201 |
+
|
1202 |
+
self.optimize_lm_head_only_at_start = False
|
1203 |
+
self.optimize_model_only_at_start = False
|
1204 |
+
|
1205 |
+
if self.optimize_model_only_at_start:
|
1206 |
+
raise NotImplementedError
|
1207 |
+
self.train_only_thinking_embedding = False
|
1208 |
+
self.weighted_embeddings = False
|
1209 |
+
self.use_start_thought_token = True
|
1210 |
+
self.use_end_thought_token = True
|
1211 |
+
self.initialize_thought_embedding_to_normal = False
|
1212 |
+
self.initial_start_token = "---"
|
1213 |
+
self.initial_end_token = "---"
|
1214 |
+
self.output_logits_at_the_end = True
|
1215 |
+
|
1216 |
+
self.wandb_enabled = False
|
1217 |
+
self.gumbel_temperature = 0.001
|
1218 |
+
|
1219 |
+
self.use_policy_loss = True
|
1220 |
+
self.include_policy_loss = True
|
1221 |
+
self.trice_mode = True
|
1222 |
+
self.remove_negative_rewards = True
|
1223 |
+
self.use_policy_loss_for_end_thought = True
|
1224 |
+
|
1225 |
+
self.base_original_mode = False
|
1226 |
+
self.original_mode = False
|
1227 |
+
|
1228 |
+
self.thought_prefix = "(Let's think step by step"
|
1229 |
+
self.tokenized_thought_prefix = None
|
1230 |
+
self.log_dict = defaultdict(int)
|
1231 |
+
self.eval_log_dict = defaultdict(int)
|
1232 |
+
self.loss_mean = loss_mean
|
1233 |
+
|
1234 |
+
self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
1235 |
+
self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
1236 |
+
|
1237 |
+
self.policy_loss_beta = 1e6
|
1238 |
+
self.embedding_scale = 1e2
|
1239 |
+
self.temperature = nn.Parameter(torch.ones(1))
|
1240 |
+
self.max_temperature = config.max_temperature
|
1241 |
+
self.reinforce_temperature = 3
|
1242 |
+
self.base_loss_beta = 1
|
1243 |
+
self.thinking_usefulness_head = nn.Linear(self.model.config.hidden_size, 1)
|
1244 |
+
self.thinking_threshold = 0.5
|
1245 |
+
self.thinking_usefulness_loss_weight = 1e-2
|
1246 |
+
|
1247 |
+
# Not used in the paper:
|
1248 |
+
self.use_thought_prefix = False
|
1249 |
+
self.use_reparam_for_thought_embeddings = False
|
1250 |
+
self.use_upper_triangular = False
|
1251 |
+
self.subtract_mean_reward = False
|
1252 |
+
self.comparison_mode = False
|
1253 |
+
self.gumbel_detach = False
|
1254 |
+
|
1255 |
+
# For visualization
|
1256 |
+
self.eval_mode = False
|
1257 |
+
|
1258 |
+
num_talk = 1
|
1259 |
+
talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
|
1260 |
+
if self.use_weighted_talk_head:
|
1261 |
+
talk_output_dim = 1
|
1262 |
+
else:
|
1263 |
+
talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
|
1264 |
+
|
1265 |
+
if not self.merged_lm_and_talk_heads:
|
1266 |
+
if self.use_complex_talk_head:
|
1267 |
+
self.talk_head = nn.ModuleList([nn.Sequential(
|
1268 |
+
nn.Linear(talk_input_dim, config.hidden_size),
|
1269 |
+
nn.ReLU(),
|
1270 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
1271 |
+
nn.ReLU(),
|
1272 |
+
nn.Linear(config.hidden_size, talk_output_dim, bias=False)
|
1273 |
+
)])
|
1274 |
+
else:
|
1275 |
+
self.talk_head = nn.ModuleList([nn.Sequential(
|
1276 |
+
nn.Linear(talk_input_dim, talk_output_dim, bias=False)
|
1277 |
+
)])
|
1278 |
+
|
1279 |
+
self.apply(self._init_weights)
|
1280 |
+
|
1281 |
+
# Add dropout regularization
|
1282 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1283 |
+
|
1284 |
+
# Initialize weights and apply final processing
|
1285 |
+
self.post_init()
|
1286 |
+
|
1287 |
+
def get_input_embeddings(self):
|
1288 |
+
return self.model.embed_tokens
|
1289 |
+
|
1290 |
+
def set_input_embeddings(self, value):
|
1291 |
+
self.model.embed_tokens = value
|
1292 |
+
|
1293 |
+
def get_output_embeddings(self):
|
1294 |
+
return self.lm_head
|
1295 |
+
|
1296 |
+
def set_output_embeddings(self, new_embeddings):
|
1297 |
+
self.lm_head = new_embeddings
|
1298 |
+
|
1299 |
+
def set_decoder(self, decoder):
|
1300 |
+
self.model = decoder
|
1301 |
+
|
1302 |
+
def get_decoder(self):
|
1303 |
+
return self.model
|
1304 |
+
|
1305 |
+
def _init_weights(self, module):
|
1306 |
+
if isinstance(module, nn.Linear):
|
1307 |
+
nn.init.xavier_uniform_(module.weight)
|
1308 |
+
if module.bias is not None:
|
1309 |
+
nn.init.constant_(module.bias, 0)
|
1310 |
+
elif isinstance(module, nn.Embedding):
|
1311 |
+
nn.init.xavier_uniform_(module.weight)
|
1312 |
+
|
1313 |
+
@torch.no_grad()
|
1314 |
+
def infer(
|
1315 |
+
self,
|
1316 |
+
input_ids: torch.LongTensor,
|
1317 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1318 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1319 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1320 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1321 |
+
use_cache: Optional[bool] = None,
|
1322 |
+
output_attentions: Optional[bool] = None,
|
1323 |
+
output_hidden_states: Optional[bool] = None,
|
1324 |
+
return_dict: Optional[bool] = None,
|
1325 |
+
):
|
1326 |
+
batch_size, seq_len = input_ids.shape
|
1327 |
+
|
1328 |
+
# Save the original input_ids and attention_mask for later use
|
1329 |
+
original_input_ids = input_ids.clone()
|
1330 |
+
original_attention_mask = attention_mask.clone() if attention_mask is not None else None
|
1331 |
+
|
1332 |
+
# Append the start thought token to the input sequence
|
1333 |
+
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
1334 |
+
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
1335 |
+
seq_len += 1
|
1336 |
+
|
1337 |
+
# Update the attention mask
|
1338 |
+
if attention_mask is not None:
|
1339 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1340 |
+
|
1341 |
+
# Generate the continuation
|
1342 |
+
continuation_length = self.n_ahead - 2
|
1343 |
+
new_key_values = past_key_values
|
1344 |
+
|
1345 |
+
# Initialize next_token_id with a default value
|
1346 |
+
next_token_id = torch.zeros(batch_size, dtype=torch.long).to(input_ids.device)
|
1347 |
+
|
1348 |
+
start_time = time.time()
|
1349 |
+
for continuation_idx in range(continuation_length):
|
1350 |
+
outputs = self.model(
|
1351 |
+
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
|
1352 |
+
attention_mask=attention_mask,
|
1353 |
+
position_ids=position_ids,
|
1354 |
+
past_key_values=new_key_values,
|
1355 |
+
inputs_embeds=inputs_embeds,
|
1356 |
+
use_cache=True,
|
1357 |
+
output_attentions=output_attentions,
|
1358 |
+
output_hidden_states=output_hidden_states,
|
1359 |
+
return_dict=return_dict,
|
1360 |
+
)
|
1361 |
+
new_key_values = outputs.past_key_values
|
1362 |
+
|
1363 |
+
hidden_states = outputs[0]
|
1364 |
+
|
1365 |
+
logits = self.lm_head(hidden_states)
|
1366 |
+
logits = logits[:, -1, :] # Only consider the last token
|
1367 |
+
|
1368 |
+
# Apply Gumbel-Softmax to the logits
|
1369 |
+
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
|
1370 |
+
next_token_id = torch.argmax(next_token_logits, dim=-1)
|
1371 |
+
|
1372 |
+
# Append the generated token to the input sequence
|
1373 |
+
# input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
|
1374 |
+
seq_len += 1
|
1375 |
+
|
1376 |
+
# Update the attention mask
|
1377 |
+
if attention_mask is not None:
|
1378 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1379 |
+
|
1380 |
+
# Append the end thought token to the input sequence
|
1381 |
+
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
1382 |
+
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
1383 |
+
seq_len += 1
|
1384 |
+
|
1385 |
+
# Update the attention mask
|
1386 |
+
if attention_mask is not None:
|
1387 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1388 |
+
|
1389 |
+
# Get the hidden states before and after the thought
|
1390 |
+
outputs_before = self.model(
|
1391 |
+
input_ids=original_input_ids,
|
1392 |
+
attention_mask=original_attention_mask,
|
1393 |
+
position_ids=position_ids,
|
1394 |
+
past_key_values=past_key_values,
|
1395 |
+
inputs_embeds=inputs_embeds,
|
1396 |
+
use_cache=use_cache,
|
1397 |
+
output_attentions=output_attentions,
|
1398 |
+
output_hidden_states=output_hidden_states,
|
1399 |
+
return_dict=return_dict,
|
1400 |
+
)
|
1401 |
+
hidden_states_before = outputs_before[0][:, -1:, :]
|
1402 |
+
|
1403 |
+
# two new tokens: last continuation token and end thought token
|
1404 |
+
outputs_after = self.model(
|
1405 |
+
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1),
|
1406 |
+
attention_mask=torch.cat([attention_mask[:, -1:], torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1),
|
1407 |
+
position_ids=position_ids,
|
1408 |
+
past_key_values=new_key_values,
|
1409 |
+
inputs_embeds=inputs_embeds,
|
1410 |
+
use_cache=use_cache,
|
1411 |
+
output_attentions=output_attentions,
|
1412 |
+
output_hidden_states=output_hidden_states,
|
1413 |
+
return_dict=return_dict,
|
1414 |
+
)
|
1415 |
+
hidden_states_after = outputs_after[0][:, -1:, :]
|
1416 |
+
|
1417 |
+
# Apply the talk head to get the mixing weight
|
1418 |
+
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
|
1419 |
+
|
1420 |
+
# Apply the mixing weight to the hidden states
|
1421 |
+
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
|
1422 |
+
|
1423 |
+
# Apply the language model head to get the final logits
|
1424 |
+
logits = self.lm_head(mixed_hidden_states)
|
1425 |
+
return logits
|
1426 |
+
|
1427 |
+
@torch.no_grad()
|
1428 |
+
def generate(
|
1429 |
+
self,
|
1430 |
+
input_ids: torch.LongTensor,
|
1431 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1432 |
+
max_new_tokens: Optional[int] = None,
|
1433 |
+
temperature: float = 1.1,
|
1434 |
+
**kwargs,
|
1435 |
+
):
|
1436 |
+
if attention_mask is None:
|
1437 |
+
# Create a default attention mask if not provided
|
1438 |
+
attention_mask = torch.ones_like(input_ids)
|
1439 |
+
|
1440 |
+
from .generate import generate
|
1441 |
+
return generate(self, input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, temperature=temperature, **kwargs)
|
1442 |
+
|
1443 |
+
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1444 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1445 |
+
def forward(
|
1446 |
+
self,
|
1447 |
+
input_ids: torch.LongTensor = None,
|
1448 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1449 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1450 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1451 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1452 |
+
labels: Optional[torch.LongTensor] = None,
|
1453 |
+
use_cache: Optional[bool] = None,
|
1454 |
+
# output_router_logits: Optional[bool] = None,
|
1455 |
+
output_attentions: Optional[bool] = None,
|
1456 |
+
output_hidden_states: Optional[bool] = None,
|
1457 |
+
return_dict: Optional[bool] = None,
|
1458 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1459 |
+
r"""
|
1460 |
+
Args:
|
1461 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1462 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1463 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1464 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1465 |
+
Returns:
|
1466 |
+
Example:
|
1467 |
+
```python
|
1468 |
+
>>> from transformers import AutoTokenizer, QuietForCausalLM
|
1469 |
+
>>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
|
1470 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
|
1471 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1472 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1473 |
+
>>> # Generate
|
1474 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1475 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1476 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1477 |
+
```"""
|
1478 |
+
|
1479 |
+
if not self.training:
|
1480 |
+
n_ahead_talk_to_restore = self.n_ahead_talk
|
1481 |
+
n_passes_to_restore = self.n_passes
|
1482 |
+
self.n_ahead_talk = 1
|
1483 |
+
self.n_passes = 1
|
1484 |
+
|
1485 |
+
# aux_loss = None
|
1486 |
+
# output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1487 |
+
# if output_router_logits:
|
1488 |
+
# router_logits = outputs.router_logits if return_dict else outputs[-1]
|
1489 |
+
# if router_logits is not None:
|
1490 |
+
# aux_loss = load_balancing_loss_func(
|
1491 |
+
# router_logits,
|
1492 |
+
# self.num_experts,
|
1493 |
+
# self.num_experts_per_tok,
|
1494 |
+
# attention_mask,
|
1495 |
+
# )
|
1496 |
+
# if labels is not None:
|
1497 |
+
# loss += self.router_aux_loss_coef * aux_loss.to(loss.device)
|
1498 |
+
|
1499 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1500 |
+
output_hidden_states = (
|
1501 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1502 |
+
)
|
1503 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1504 |
+
|
1505 |
+
assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
|
1506 |
+
assert not (self.skip_residual and self.use_policy_loss)
|
1507 |
+
|
1508 |
+
if self.tokenized_thought_prefix is None and self.use_thought_prefix:
|
1509 |
+
self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
1510 |
+
|
1511 |
+
def apply_head(head, states, detach=False):
|
1512 |
+
if detach:
|
1513 |
+
head_weight = head.weight.detach()
|
1514 |
+
else:
|
1515 |
+
head_weight = head.weight
|
1516 |
+
head_weight = head_weight.to(states.device)
|
1517 |
+
return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
|
1518 |
+
|
1519 |
+
def idx_if_sequential(head, idx=0):
|
1520 |
+
if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
|
1521 |
+
return idx_if_sequential(head[idx], idx=idx)
|
1522 |
+
return head
|
1523 |
+
|
1524 |
+
def none_repeat_interleave(x, n):
|
1525 |
+
if x is None:
|
1526 |
+
return x
|
1527 |
+
return x.repeat_interleave(n, dim=0)
|
1528 |
+
|
1529 |
+
if self.n_passes > 1:
|
1530 |
+
input_ids = none_repeat_interleave(input_ids, self.n_passes)
|
1531 |
+
attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
|
1532 |
+
position_ids = none_repeat_interleave(position_ids, self.n_passes)
|
1533 |
+
inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
|
1534 |
+
labels = none_repeat_interleave(labels, self.n_passes)
|
1535 |
+
if past_key_values is not None:
|
1536 |
+
past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
|
1537 |
+
cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)
|
1538 |
+
|
1539 |
+
self.tokenizer_has_start_thought_token = True
|
1540 |
+
self.tokenizer_has_end_thought_token = True
|
1541 |
+
if self.start_token_id is None:
|
1542 |
+
self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
1543 |
+
if self.start_token_id == 0:
|
1544 |
+
self.start_token_id = self.tokenizer.bos_token_id
|
1545 |
+
self.tokenizer_has_start_thought_token = False
|
1546 |
+
elif self.use_start_thought_token:
|
1547 |
+
# base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
|
1548 |
+
base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
|
1549 |
+
if self.initialize_thought_embedding_to_normal:
|
1550 |
+
self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
|
1551 |
+
else:
|
1552 |
+
self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
|
1553 |
+
self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
1554 |
+
if self.end_token_id is None:
|
1555 |
+
self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
1556 |
+
if self.end_token_id == 0:
|
1557 |
+
self.end_token_id = self.tokenizer.eos_token_id
|
1558 |
+
self.tokenizer_has_end_thought_token = False
|
1559 |
+
elif self.use_end_thought_token:
|
1560 |
+
# base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
|
1561 |
+
base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
|
1562 |
+
if self.initialize_thought_embedding_to_normal:
|
1563 |
+
self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
|
1564 |
+
else:
|
1565 |
+
self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
|
1566 |
+
self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
1567 |
+
|
1568 |
+
if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
|
1569 |
+
self.rm_initialized = True
|
1570 |
+
if not self.use_shallow_talk:
|
1571 |
+
head = self.talk_head[0]
|
1572 |
+
cur_head = head[-1] if isinstance(head, nn.Sequential) else head
|
1573 |
+
talk_input_dim = cur_head.weight.data.shape[1]
|
1574 |
+
talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
|
1575 |
+
cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
|
1576 |
+
else:
|
1577 |
+
# convert to identity transform
|
1578 |
+
def lambda_transform(cur_head):
|
1579 |
+
# pdb.set_trace()
|
1580 |
+
if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
|
1581 |
+
return torch.cat([
|
1582 |
+
torch.eye(
|
1583 |
+
cur_head.weight.data.shape[0],
|
1584 |
+
device=cur_head.weight.device,
|
1585 |
+
dtype=cur_head.weight.dtype
|
1586 |
+
),
|
1587 |
+
torch.zeros(
|
1588 |
+
cur_head.weight.data.shape[0],
|
1589 |
+
cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
|
1590 |
+
device=cur_head.weight.device,
|
1591 |
+
dtype=cur_head.weight.dtype
|
1592 |
+
)], dim=1)
|
1593 |
+
return torch.eye(
|
1594 |
+
cur_head.weight.data.shape[0],
|
1595 |
+
device=cur_head.weight.device,
|
1596 |
+
dtype=cur_head.weight.dtype
|
1597 |
+
)
|
1598 |
+
if isinstance(self.talk_head[0], nn.Sequential):
|
1599 |
+
for cur_head in self.talk_head[0]:
|
1600 |
+
# if it has weights
|
1601 |
+
if hasattr(cur_head, "weight"):
|
1602 |
+
cur_head.weight.data = lambda_transform(cur_head)
|
1603 |
+
else:
|
1604 |
+
self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])
|
1605 |
+
|
1606 |
+
loss = None
|
1607 |
+
prev_rm_tokens = None
|
1608 |
+
cur_rm_tokens = None
|
1609 |
+
prev_rm_logits = None
|
1610 |
+
prev_sample_probs = None
|
1611 |
+
did_skip_sampling = None
|
1612 |
+
skip_sampling = None
|
1613 |
+
sample_probs = None
|
1614 |
+
hidden_states = None
|
1615 |
+
logits = None
|
1616 |
+
talk_kl_penalty = None
|
1617 |
+
rm_logits = None
|
1618 |
+
residual_logits = None
|
1619 |
+
probabilities_2d = None
|
1620 |
+
prev_probabilities_2d = None
|
1621 |
+
policy_reward = None
|
1622 |
+
logits_to_output = None
|
1623 |
+
batch_size, seq_len = input_ids.shape
|
1624 |
+
base_input_ids = input_ids.clone()
|
1625 |
+
loss_list = []
|
1626 |
+
dqn_loss_list = []
|
1627 |
+
sampled_token_history = []
|
1628 |
+
sample_probs_history = []
|
1629 |
+
action_loglikelihoods_list = []
|
1630 |
+
|
1631 |
+
temperature = self.temperature
|
1632 |
+
|
1633 |
+
if self.use_end_thought_token or self.use_start_thought_token:
|
1634 |
+
if not self.use_reparam_for_thought_embeddings:
|
1635 |
+
start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale * temperature
|
1636 |
+
end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale * temperature
|
1637 |
+
else:
|
1638 |
+
start_embedding = self.start_embedding * self.embedding_scale * temperature
|
1639 |
+
end_embedding = self.end_embedding * self.embedding_scale * temperature
|
1640 |
+
base_embeddings = self.model.embed_tokens.weight
|
1641 |
+
if self.train_only_thinking_embedding:
|
1642 |
+
base_embeddings = base_embeddings.detach()
|
1643 |
+
|
1644 |
+
# # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1645 |
+
fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
|
1646 |
+
for ahead_idx in range(fwd_iters):
|
1647 |
+
past_key_values_length = 0
|
1648 |
+
if past_key_values is not None:
|
1649 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1650 |
+
if use_legacy_cache:
|
1651 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1652 |
+
past_key_values_length = past_key_values.get_usable_length(seq_len)
|
1653 |
+
|
1654 |
+
if position_ids is None:
|
1655 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1656 |
+
position_ids = torch.arange(
|
1657 |
+
past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
|
1658 |
+
)
|
1659 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
|
1660 |
+
else:
|
1661 |
+
position_ids = position_ids.view(-1, seq_len).long()
|
1662 |
+
|
1663 |
+
if inputs_embeds is None:
|
1664 |
+
contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
|
1665 |
+
contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
|
1666 |
+
contains_thought = contains_start or contains_end
|
1667 |
+
if contains_thought:
|
1668 |
+
thought_id = self.start_token_id if contains_start else self.end_token_id
|
1669 |
+
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
1670 |
+
if self.use_reparam_for_thought_embeddings:
|
1671 |
+
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
1672 |
+
inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
1673 |
+
if contains_start:
|
1674 |
+
sampled_start = inputs_embeds.clone().detach()
|
1675 |
+
if contains_end:
|
1676 |
+
sampled_end = inputs_embeds.clone().detach()
|
1677 |
+
else:
|
1678 |
+
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
1679 |
+
else:
|
1680 |
+
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
1681 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
1682 |
+
|
1683 |
+
if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
|
1684 |
+
if attention_mask is None:
|
1685 |
+
base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
|
1686 |
+
base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
|
1687 |
+
base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
|
1688 |
+
attention_mask = base_attention_mask
|
1689 |
+
# breakpoint()
|
1690 |
+
elif attention_mask.dim() == 2:
|
1691 |
+
if seq_len + past_key_values_length != attention_mask.shape[-1]:
|
1692 |
+
# breakpoint()
|
1693 |
+
attention_mask = torch.cat(
|
1694 |
+
[torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
|
1695 |
+
dim=-1
|
1696 |
+
)
|
1697 |
+
# # if the attention mask
|
1698 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1699 |
+
attention_mask,
|
1700 |
+
(batch_size, seq_len),
|
1701 |
+
inputs_embeds,
|
1702 |
+
past_key_values_length,
|
1703 |
+
sliding_window=self.config.sliding_window,
|
1704 |
+
)
|
1705 |
+
|
1706 |
+
outputs = self.model(
|
1707 |
+
# input_ids=input_ids,
|
1708 |
+
attention_mask=attention_mask,
|
1709 |
+
position_ids=position_ids,
|
1710 |
+
past_key_values=past_key_values,
|
1711 |
+
inputs_embeds=inputs_embeds,
|
1712 |
+
use_cache=use_cache,
|
1713 |
+
output_attentions=output_attentions,
|
1714 |
+
output_hidden_states=output_hidden_states,
|
1715 |
+
# output_router_logits=output_router_logits,
|
1716 |
+
return_dict=return_dict,
|
1717 |
+
)
|
1718 |
+
|
1719 |
+
prev_hidden_states = hidden_states
|
1720 |
+
hidden_states = outputs[0]
|
1721 |
+
prev_rm_logits = rm_logits # for policy gradient
|
1722 |
+
prev_rm_tokens = cur_rm_tokens # for policy gradient
|
1723 |
+
|
1724 |
+
if ahead_idx == 0:
|
1725 |
+
hidden_states_lm = hidden_states
|
1726 |
+
logits = self.lm_head(hidden_states_lm)
|
1727 |
+
base_hidden_states = hidden_states.clone()
|
1728 |
+
initial_loss_logits = logits.clone()
|
1729 |
+
if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
|
1730 |
+
logits = logits.detach()
|
1731 |
+
base_hidden_states = base_hidden_states.detach()
|
1732 |
+
if self.optimize_model_only_at_start:
|
1733 |
+
hidden_states = hidden_states.detach()
|
1734 |
+
base_logits = logits.clone()
|
1735 |
+
else:
|
1736 |
+
talk_hidden_states = hidden_states
|
1737 |
+
if self.merged_lm_and_talk_heads:
|
1738 |
+
assert self.no_residual
|
1739 |
+
residual_logits = self.lm_head(hidden_states)
|
1740 |
+
talk_hidden_states = hidden_states
|
1741 |
+
else:
|
1742 |
+
if ahead_idx > self.n_ahead - 1:
|
1743 |
+
cur_base_hidden = torch.cat([
|
1744 |
+
base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
|
1745 |
+
base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
|
1746 |
+
], dim=-2)
|
1747 |
+
else:
|
1748 |
+
cur_base_hidden = base_hidden_states
|
1749 |
+
|
1750 |
+
if self.use_concat_talk_head:
|
1751 |
+
# concatenate the hidden states with the original hidden states
|
1752 |
+
head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
|
1753 |
+
else:
|
1754 |
+
head_input_hidden_states = talk_hidden_states
|
1755 |
+
|
1756 |
+
residual_logits = self.talk_head[0](head_input_hidden_states)
|
1757 |
+
if self.use_shallow_talk:
|
1758 |
+
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
1759 |
+
residual_logits = residual_logits.to(logits.device)
|
1760 |
+
if self.use_weighted_talk_head:
|
1761 |
+
# combine the cur_base_hidden with the talk_hidden_states according to the weighted head
|
1762 |
+
residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
|
1763 |
+
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
1764 |
+
|
1765 |
+
assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
|
1766 |
+
if self.clever_residual:
|
1767 |
+
if ahead_idx >= self.n_ahead - 1:
|
1768 |
+
# get the logits shifted according to the current talk ahead
|
1769 |
+
cur_base_logits = torch.cat([
|
1770 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
1771 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
1772 |
+
], dim=-2)
|
1773 |
+
if self.optimize_lm_head_only_at_start:
|
1774 |
+
cur_base_logits = cur_base_logits.detach()
|
1775 |
+
logits = cur_base_logits + residual_logits
|
1776 |
+
else:
|
1777 |
+
logits += residual_logits / self.n_ahead
|
1778 |
+
elif self.cumulative_residual:
|
1779 |
+
if self.residual_talk_head:
|
1780 |
+
if ahead_idx < self.n_ahead:
|
1781 |
+
logits += residual_logits
|
1782 |
+
else:
|
1783 |
+
# get the logits shifted according to the current talk ahead
|
1784 |
+
cur_base_logits = torch.cat([
|
1785 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
1786 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
1787 |
+
], dim=-2)
|
1788 |
+
if self.optimize_lm_head_only_at_start:
|
1789 |
+
cur_base_logits = cur_base_logits.detach()
|
1790 |
+
logits = cur_base_logits + residual_logits
|
1791 |
+
else:
|
1792 |
+
if ahead_idx < self.n_ahead:
|
1793 |
+
logits += residual_logits
|
1794 |
+
else:
|
1795 |
+
logits = residual_logits
|
1796 |
+
elif self.skip_residual:
|
1797 |
+
if ahead_idx >= self.n_ahead:
|
1798 |
+
# get the logits shifted according to the current talk ahead
|
1799 |
+
cur_base_logits = torch.cat([
|
1800 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
1801 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
1802 |
+
], dim=-2)
|
1803 |
+
if self.optimize_lm_head_only_at_start:
|
1804 |
+
cur_base_logits = cur_base_logits.detach()
|
1805 |
+
logits = cur_base_logits
|
1806 |
+
elif self.no_residual:
|
1807 |
+
logits = residual_logits
|
1808 |
+
else:
|
1809 |
+
logits = base_logits + residual_logits
|
1810 |
+
|
1811 |
+
attempted = False
|
1812 |
+
talk_loss_list = []
|
1813 |
+
if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
|
1814 |
+
loss = None
|
1815 |
+
attempted = True
|
1816 |
+
|
1817 |
+
if labels is not None:
|
1818 |
+
for shift_amount in range(self.n_ahead_talk):
|
1819 |
+
# Shift so that tokens < n predict n
|
1820 |
+
# ab[cde]f
|
1821 |
+
# abc[def]
|
1822 |
+
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
1823 |
+
loss_logits = initial_loss_logits
|
1824 |
+
else:
|
1825 |
+
loss_logits = logits
|
1826 |
+
shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
|
1827 |
+
shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
1828 |
+
# Flatten the tokens
|
1829 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
1830 |
+
# print("Shift logits before:", shift_logits)
|
1831 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1832 |
+
shift_labels = shift_labels.view(-1).clone()
|
1833 |
+
# print("shift logits after:", shift_logits)
|
1834 |
+
# Enable model parallelism
|
1835 |
+
shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
|
1836 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1837 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1838 |
+
if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
|
1839 |
+
loss_list.append(loss)
|
1840 |
+
talk_loss_list.append(nonzero_mean(loss).detach())
|
1841 |
+
|
1842 |
+
if not attempted or self.comparison_mode:
|
1843 |
+
rm_hidden_states = hidden_states
|
1844 |
+
# print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
|
1845 |
+
rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
|
1846 |
+
|
1847 |
+
# don't allow it to predict the thinking token
|
1848 |
+
if self.tokenizer_has_start_thought_token:
|
1849 |
+
rm_logits[..., self.start_token_id] = -1e10
|
1850 |
+
if self.tokenizer_has_end_thought_token:
|
1851 |
+
rm_logits[..., self.end_token_id] = -1e10
|
1852 |
+
probabilities = rm_logits
|
1853 |
+
if probabilities_2d is not None:
|
1854 |
+
prev_probabilities_2d = probabilities_2d.clone()
|
1855 |
+
probabilities_2d = probabilities.view(-1, probabilities.size(-1))
|
1856 |
+
|
1857 |
+
did_skip_sampling = skip_sampling
|
1858 |
+
skip_sampling = False
|
1859 |
+
if ahead_idx == 0 and self.use_start_thought_token:
|
1860 |
+
override_token = self.start_token_id
|
1861 |
+
elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
|
1862 |
+
override_token = self.tokenized_thought_prefix[..., ahead_idx]
|
1863 |
+
elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
|
1864 |
+
override_token = self.end_token_id
|
1865 |
+
else:
|
1866 |
+
override_token = None
|
1867 |
+
if override_token is not None and self.n_ahead > 1:
|
1868 |
+
# always start with the start token
|
1869 |
+
probabilities_2d = torch.zeros_like(probabilities_2d)
|
1870 |
+
probabilities_2d[:, override_token] = 1.0
|
1871 |
+
skip_sampling = True
|
1872 |
+
elif ahead_idx >= self.n_ahead - 1:
|
1873 |
+
if labels is not None: # we're in the talk phase
|
1874 |
+
cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
|
1875 |
+
# print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
|
1876 |
+
shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
|
1877 |
+
padding = torch.full_like(
|
1878 |
+
labels[..., :cur_talk_n],
|
1879 |
+
self.tokenizer.pad_token_id,
|
1880 |
+
dtype=torch.long,
|
1881 |
+
device=shift_labels.device
|
1882 |
+
)
|
1883 |
+
new_rm_tokens = torch.cat(
|
1884 |
+
[shift_labels, padding],
|
1885 |
+
dim=-1
|
1886 |
+
)
|
1887 |
+
|
1888 |
+
# print((new_rm_tokens > self.vocab_size - 1).any().item())
|
1889 |
+
new_rm_tokens = torch.clamp(new_rm_tokens, 0, self.vocab_size - 1)
|
1890 |
+
|
1891 |
+
# Now safely convert rm tokens to one-hot
|
1892 |
+
probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
|
1893 |
+
else:
|
1894 |
+
continue
|
1895 |
+
temperature = self.gumbel_temperature if self.training else 0.001
|
1896 |
+
prev_sample_probs = sample_probs
|
1897 |
+
sample_probs = probabilities_2d
|
1898 |
+
if ahead_idx < self.n_ahead - 1 and not skip_sampling:
|
1899 |
+
probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
|
1900 |
+
if self.gumbel_detach:
|
1901 |
+
probabilities_2d = probabilities_2d.detach()
|
1902 |
+
sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
|
1903 |
+
# convert rm logits directly to embeddings
|
1904 |
+
contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
|
1905 |
+
contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
|
1906 |
+
contains_thought = contains_start or contains_end
|
1907 |
+
|
1908 |
+
|
1909 |
+
if not contains_thought:
|
1910 |
+
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
1911 |
+
inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype) * temperature)
|
1912 |
+
else:
|
1913 |
+
thought_id = self.start_token_id if contains_start else self.end_token_id
|
1914 |
+
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
1915 |
+
if self.use_reparam_for_thought_embeddings:
|
1916 |
+
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
1917 |
+
inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
1918 |
+
if contains_start:
|
1919 |
+
sampled_start = inputs_embeds.clone().detach()
|
1920 |
+
else:
|
1921 |
+
sampled_end = inputs_embeds.clone().detach()
|
1922 |
+
else:
|
1923 |
+
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
1924 |
+
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
1925 |
+
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
1926 |
+
|
1927 |
+
# Predict the usefulness of thinking at each token position
|
1928 |
+
thinking_usefulness = self.thinking_usefulness_head(hidden_states).squeeze(-1)
|
1929 |
+
|
1930 |
+
# Apply a threshold to decide where to generate thoughts
|
1931 |
+
generate_thought_mask = thinking_usefulness > self.thinking_threshold
|
1932 |
+
|
1933 |
+
# Compute the regularization loss for thinking usefulness prediction
|
1934 |
+
thinking_usefulness_loss = torch.mean(thinking_usefulness * (1 - generate_thought_mask.float()))
|
1935 |
+
|
1936 |
+
# Add the regularization loss to the total loss
|
1937 |
+
if loss is not None:
|
1938 |
+
loss = loss + self.thinking_usefulness_loss_weight * thinking_usefulness_loss
|
1939 |
+
else:
|
1940 |
+
loss = self.thinking_usefulness_loss_weight * thinking_usefulness_loss
|
1941 |
+
|
1942 |
+
|
1943 |
+
if len(attention_mask.shape) == 2:
|
1944 |
+
breakpoint()
|
1945 |
+
else:
|
1946 |
+
original_attention = attention_mask[..., :attention_mask.shape[-2]]
|
1947 |
+
if self.use_upper_triangular:
|
1948 |
+
new_attention = original_attention
|
1949 |
+
else:
|
1950 |
+
original_attention = original_attention == attention_mask.max()
|
1951 |
+
# because eye isn't implemented for BF16, we need to handle the case
|
1952 |
+
if not attention_mask.dtype == torch.bfloat16:
|
1953 |
+
new_attention = torch.eye(
|
1954 |
+
seq_len, dtype=attention_mask.dtype, device=attention_mask.device
|
1955 |
+
)
|
1956 |
+
else:
|
1957 |
+
new_attention = torch.eye(
|
1958 |
+
seq_len, dtype=torch.float32, device=attention_mask.device
|
1959 |
+
).to(attention_mask.dtype)
|
1960 |
+
|
1961 |
+
new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
|
1962 |
+
new_attention = new_attention * original_attention
|
1963 |
+
new_attention[new_attention == 0] = attention_mask.min()
|
1964 |
+
new_attention[new_attention == 1] = attention_mask.max()
|
1965 |
+
attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
|
1966 |
+
past_key_values = outputs.past_key_values
|
1967 |
+
position_ids = position_ids + 1
|
1968 |
+
|
1969 |
+
if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
|
1970 |
+
# Shift so that tokens < n predict n
|
1971 |
+
# logits: abcdef -> bcdef? -> cdef??
|
1972 |
+
# labels: abcdef -> ?bcdef -> ??cdef
|
1973 |
+
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
1974 |
+
loss_logits = initial_loss_logits
|
1975 |
+
else:
|
1976 |
+
loss_logits = logits
|
1977 |
+
shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
|
1978 |
+
shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
|
1979 |
+
shift_labels = labels[..., shift_idx:].contiguous()
|
1980 |
+
# Flatten the tokens
|
1981 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
1982 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1983 |
+
shift_labels = shift_labels.view(-1)
|
1984 |
+
# Enable model parallelism
|
1985 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1986 |
+
# if shift_labels.min() == self.tokenizer.pad_token_id:
|
1987 |
+
shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
|
1988 |
+
unreduced_loss = loss_fct(shift_logits, shift_labels)
|
1989 |
+
# print("Loss:", unreduced_loss.item()) # Print the loss before checking for NaN values
|
1990 |
+
if torch.any(unreduced_loss != unreduced_loss):
|
1991 |
+
# pdb.set_trace()
|
1992 |
+
raise ValueError("NaN loss")
|
1993 |
+
unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
|
1994 |
+
loss_list.append(unreduced_loss)
|
1995 |
+
|
1996 |
+
|
1997 |
+
if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
|
1998 |
+
# we treat the change in loss as the reward
|
1999 |
+
previous_loss = loss_list[-2]
|
2000 |
+
# for example, suppose n_ahead = 3 and n_ahead_talk = 2
|
2001 |
+
# note that we end at self.n_ahead + self.n_ahead_talk - 2
|
2002 |
+
# in this case, 5 - 2 = 3, so we end at ahead_idx = 3
|
2003 |
+
# we also predict the next token at ahead_idx = 2
|
2004 |
+
# when we get to ahead_idx = 2, we predict ahead
|
2005 |
+
# so we shift by 1
|
2006 |
+
# note that this is ahead_idx = n_ahead - 1
|
2007 |
+
# when we get to ahead_idx = 3, we predict ahead
|
2008 |
+
# so we shift by 2
|
2009 |
+
# note that this is ahead_idx = n_ahead
|
2010 |
+
if ahead_idx < self.n_ahead - 1:
|
2011 |
+
shift_amount = 0
|
2012 |
+
reward_scale = 1.0
|
2013 |
+
original_dqn_reward = torch.sign(previous_loss - unreduced_loss).detach() * reward_scale
|
2014 |
+
if self.first_and_last_mode:
|
2015 |
+
original_dqn_reward = original_dqn_reward * 0.0
|
2016 |
+
else:
|
2017 |
+
# logits vs cur_policy_shift_logits
|
2018 |
+
# let's look at rm_logits and prev_rm_logits
|
2019 |
+
shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
|
2020 |
+
# let's say shift_amount = 2
|
2021 |
+
# abcdefg -> bcdefg? -> cdefg??
|
2022 |
+
# logits = [a b]c d e f[g]
|
2023 |
+
# labels = [a b c]d e f g
|
2024 |
+
cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
|
2025 |
+
cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
2026 |
+
# Flatten the tokens
|
2027 |
+
cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
|
2028 |
+
cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
|
2029 |
+
cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
|
2030 |
+
# Enable model parallelism
|
2031 |
+
cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
|
2032 |
+
cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
|
2033 |
+
cur_policy_reward_base_loss = loss_fct(
|
2034 |
+
cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
|
2035 |
+
).reshape(logits.shape[0], -1)
|
2036 |
+
original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
|
2037 |
+
|
2038 |
+
if not did_skip_sampling:
|
2039 |
+
nonzero_indices = prev_probabilities_2d.nonzero()
|
2040 |
+
action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
|
2041 |
+
action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
|
2042 |
+
action_loglikelihoods_list.append(action_loglikelihoods_2d)
|
2043 |
+
if policy_reward is None:
|
2044 |
+
policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
2045 |
+
else:
|
2046 |
+
if self.n_ahead_talk > shift_amount:
|
2047 |
+
added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
2048 |
+
else:
|
2049 |
+
added_reward = original_dqn_reward
|
2050 |
+
policy_reward += added_reward
|
2051 |
+
|
2052 |
+
for action_loglikelihoods_2d in action_loglikelihoods_list:
|
2053 |
+
train_policy_reward = policy_reward
|
2054 |
+
|
2055 |
+
# discard rewards below the mean
|
2056 |
+
if self.trice_mode and self.n_passes > 1:
|
2057 |
+
batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
|
2058 |
+
# average over the passes
|
2059 |
+
train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
|
2060 |
+
train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
|
2061 |
+
|
2062 |
+
if self.subtract_mean_reward:
|
2063 |
+
train_policy_reward = train_policy_reward - train_policy_reward.mean()
|
2064 |
+
if self.remove_negative_rewards:
|
2065 |
+
fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
|
2066 |
+
else:
|
2067 |
+
fixed_policy_reward = train_policy_reward.detach()
|
2068 |
+
|
2069 |
+
# Normalize rewards
|
2070 |
+
fixed_policy_reward = (fixed_policy_reward - fixed_policy_reward.mean()) / (fixed_policy_reward.std() + 1e-8)
|
2071 |
+
actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
|
2072 |
+
if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
|
2073 |
+
# This will only happen when we force the next token to be the end of thought token
|
2074 |
+
break
|
2075 |
+
dqn_loss_list.append(actor_loss.mean())
|
2076 |
+
|
2077 |
+
if loss_list:
|
2078 |
+
if self.first_and_last_mode:
|
2079 |
+
loss = sum(
|
2080 |
+
self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
|
2081 |
+
) * (1 - self.original_loss_weight) / self.n_ahead_talk
|
2082 |
+
loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
|
2083 |
+
# Let's NaN out the others
|
2084 |
+
# e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
|
2085 |
+
for i in range(1, len(loss_list) - self.n_ahead_talk):
|
2086 |
+
loss_list[i] = loss_list[i] * math.nan
|
2087 |
+
elif self.first_only:
|
2088 |
+
loss = self.loss_mean(loss_list[0])
|
2089 |
+
elif self.final_only_mode:
|
2090 |
+
loss = sum(
|
2091 |
+
self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
|
2092 |
+
) / self.n_ahead_talk
|
2093 |
+
else:
|
2094 |
+
loss = None
|
2095 |
+
for i in range(len(loss_list)):
|
2096 |
+
cur_loss = self.loss_mean(loss_list[i])
|
2097 |
+
if loss is not None:
|
2098 |
+
loss = loss + cur_loss.to(loss.device)
|
2099 |
+
else:
|
2100 |
+
loss = cur_loss
|
2101 |
+
loss = loss / len(loss_list)
|
2102 |
+
loss = loss + thinking_usefulness_loss
|
2103 |
+
|
2104 |
+
base_loss_scale = 0.6
|
2105 |
+
policy_loss_scale = 0.03
|
2106 |
+
|
2107 |
+
loss = loss * base_loss_scale
|
2108 |
+
|
2109 |
+
if dqn_loss_list:
|
2110 |
+
dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
|
2111 |
+
if self.include_policy_loss:
|
2112 |
+
if loss is not None:
|
2113 |
+
loss += dqn_loss * policy_loss_scale
|
2114 |
+
else:
|
2115 |
+
loss = dqn_loss * self.policy_loss_beta
|
2116 |
+
|
2117 |
+
if not return_dict:
|
2118 |
+
output = (logits,) + outputs[1:]
|
2119 |
+
return (loss,) + output if loss is not None else output
|
2120 |
+
|
2121 |
+
base_log_dict = {
|
2122 |
+
f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
|
2123 |
+
}
|
2124 |
+
|
2125 |
+
if loss is not None:
|
2126 |
+
base_log_dict["loss_train"] = loss.item()
|
2127 |
+
|
2128 |
+
if not self.training:
|
2129 |
+
self.n_ahead_talk = n_ahead_talk_to_restore
|
2130 |
+
self.n_passes = n_passes_to_restore
|
2131 |
+
|
2132 |
+
del start_embedding
|
2133 |
+
del end_embedding
|
2134 |
+
torch.cuda.empty_cache()
|
2135 |
+
|
2136 |
+
|
2137 |
+
return CausalLMOutputWithPast(
|
2138 |
+
loss=loss if loss is not None else None,
|
2139 |
+
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
|
2140 |
+
past_key_values=outputs.past_key_values,
|
2141 |
+
hidden_states=outputs.hidden_states,
|
2142 |
+
attentions=outputs.attentions,
|
2143 |
+
)
|
2144 |
+
|
2145 |
+
|
2146 |
+
|
2147 |
+
def prepare_inputs_for_generation(
|
2148 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
2149 |
+
):
|
2150 |
+
# Omit tokens covered by past_key_values
|
2151 |
+
if past_key_values is not None:
|
2152 |
+
if isinstance(past_key_values, Cache):
|
2153 |
+
cache_length = past_key_values.get_seq_length()
|
2154 |
+
past_length = past_key_values.seen_tokens
|
2155 |
+
max_cache_length = past_key_values.get_max_length()
|
2156 |
+
else:
|
2157 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
2158 |
+
max_cache_length = None
|
2159 |
+
|
2160 |
+
# Keep only the unprocessed tokens:
|
2161 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
2162 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
|
2163 |
+
# input)
|
2164 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
2165 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
2166 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
2167 |
+
# input_ids based on the past_length.
|
2168 |
+
elif past_length < input_ids.shape[1]:
|
2169 |
+
input_ids = input_ids[:, past_length:]
|
2170 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
2171 |
+
|
2172 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
2173 |
+
if (
|
2174 |
+
max_cache_length is not None
|
2175 |
+
and attention_mask is not None
|
2176 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
2177 |
+
):
|
2178 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
2179 |
+
|
2180 |
+
position_ids = kwargs.get("position_ids", None)
|
2181 |
+
if attention_mask is not None and position_ids is None:
|
2182 |
+
# create position_ids on the fly for batch generation
|
2183 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
2184 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
2185 |
+
if past_key_values:
|
2186 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
2187 |
+
|
2188 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
2189 |
+
if inputs_embeds is not None and past_key_values is None:
|
2190 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
2191 |
+
else:
|
2192 |
+
model_inputs = {"input_ids": input_ids}
|
2193 |
+
|
2194 |
+
model_inputs.update(
|
2195 |
+
{
|
2196 |
+
"position_ids": position_ids,
|
2197 |
+
"past_key_values": past_key_values,
|
2198 |
+
"use_cache": kwargs.get("use_cache"),
|
2199 |
+
"attention_mask": attention_mask,
|
2200 |
+
}
|
2201 |
+
)
|
2202 |
+
return model_inputs
|
2203 |
+
|
2204 |
+
@staticmethod
|
2205 |
+
def _reorder_cache(past_key_values, beam_idx):
|
2206 |
+
reordered_past = ()
|
2207 |
+
for layer_past in past_key_values:
|
2208 |
+
reordered_past += (
|
2209 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
2210 |
+
)
|
2211 |
+
return reordered_past
|
2212 |
+
|
2213 |
+
|
2214 |
+
|
2215 |
+
|
2216 |
+
@add_start_docstrings(
|
2217 |
+
"""
|
2218 |
+
The Quiet Model transformer with a sequence classification head on top (linear layer).
|
2219 |
+
[`QuietForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
2220 |
+
(e.g. GPT-2) do.
|
2221 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
2222 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
2223 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
2224 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
2225 |
+
each row of the batch).
|
2226 |
+
""",
|
2227 |
+
QUIET_START_DOCSTRING,
|
2228 |
+
)
|
2229 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
|
2230 |
+
class QuietForSequenceClassification(QuietPreTrainedModel):
|
2231 |
+
def __init__(self, config):
|
2232 |
+
super().__init__(config)
|
2233 |
+
self.num_labels = config.num_labels
|
2234 |
+
self.model = QuietModel(config)
|
2235 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
2236 |
+
|
2237 |
+
# Initialize weights and apply final processing
|
2238 |
+
self.post_init()
|
2239 |
+
|
2240 |
+
def get_input_embeddings(self):
|
2241 |
+
return self.model.embed_tokens
|
2242 |
+
|
2243 |
+
def set_input_embeddings(self, value):
|
2244 |
+
self.model.embed_tokens = value
|
2245 |
+
|
2246 |
+
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
2247 |
+
def forward(
|
2248 |
+
self,
|
2249 |
+
input_ids: torch.LongTensor = None,
|
2250 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2251 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2252 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
2253 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2254 |
+
labels: Optional[torch.LongTensor] = None,
|
2255 |
+
use_cache: Optional[bool] = None,
|
2256 |
+
output_attentions: Optional[bool] = None,
|
2257 |
+
output_hidden_states: Optional[bool] = None,
|
2258 |
+
return_dict: Optional[bool] = None,
|
2259 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
2260 |
+
r"""
|
2261 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
2262 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
2263 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
2264 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
2265 |
+
"""
|
2266 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2267 |
+
|
2268 |
+
transformer_outputs = self.model(
|
2269 |
+
input_ids,
|
2270 |
+
attention_mask=attention_mask,
|
2271 |
+
position_ids=position_ids,
|
2272 |
+
past_key_values=past_key_values,
|
2273 |
+
inputs_embeds=inputs_embeds,
|
2274 |
+
use_cache=use_cache,
|
2275 |
+
output_attentions=output_attentions,
|
2276 |
+
output_hidden_states=output_hidden_states,
|
2277 |
+
return_dict=return_dict,
|
2278 |
+
)
|
2279 |
+
hidden_states = transformer_outputs[0]
|
2280 |
+
logits = self.score(hidden_states)
|
2281 |
+
|
2282 |
+
if input_ids is not None:
|
2283 |
+
batch_size = input_ids.shape[0]
|
2284 |
+
else:
|
2285 |
+
batch_size = inputs_embeds.shape[0]
|
2286 |
+
|
2287 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
2288 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
2289 |
+
if self.config.pad_token_id is None:
|
2290 |
+
sequence_lengths = -1
|
2291 |
+
else:
|
2292 |
+
if input_ids is not None:
|
2293 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
2294 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
2295 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
2296 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
2297 |
+
else:
|
2298 |
+
sequence_lengths = -1
|
2299 |
+
|
2300 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
2301 |
+
|
2302 |
+
loss = None
|
2303 |
+
if labels is not None:
|
2304 |
+
labels = labels.to(logits.device)
|
2305 |
+
if self.config.problem_type is None:
|
2306 |
+
if self.num_labels == 1:
|
2307 |
+
self.config.problem_type = "regression"
|
2308 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
2309 |
+
self.config.problem_type = "single_label_classification"
|
2310 |
+
else:
|
2311 |
+
self.config.problem_type = "multi_label_classification"
|
2312 |
+
|
2313 |
+
if self.config.problem_type == "regression":
|
2314 |
+
loss_fct = MSELoss()
|
2315 |
+
if self.num_labels == 1:
|
2316 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
2317 |
+
else:
|
2318 |
+
loss = loss_fct(pooled_logits, labels)
|
2319 |
+
elif self.config.problem_type == "single_label_classification":
|
2320 |
+
loss_fct = CrossEntropyLoss()
|
2321 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
2322 |
+
elif self.config.problem_type == "multi_label_classification":
|
2323 |
+
loss_fct = BCEWithLogitsLoss()
|
2324 |
+
loss = loss_fct(pooled_logits, labels)
|
2325 |
+
if not return_dict:
|
2326 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
2327 |
+
return ((loss,) + output) if loss is not None else output
|
2328 |
+
|
2329 |
+
return SequenceClassifierOutputWithPast(
|
2330 |
+
loss=loss,
|
2331 |
+
logits=pooled_logits,
|
2332 |
+
past_key_values=transformer_outputs.past_key_values,
|
2333 |
+
hidden_states=transformer_outputs.hidden_states,
|
2334 |
+
attentions=transformer_outputs.attentions,
|
2335 |
+
)
|
optuna.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import optuna
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
5 |
+
from datasets import load_dataset
|
6 |
+
from trl import SFTTrainer
|
7 |
+
import time
|
8 |
+
|
9 |
+
# Set random seed for reproducibility
|
10 |
+
random_seed = 42
|
11 |
+
torch.manual_seed(random_seed)
|
12 |
+
random.seed(random_seed)
|
13 |
+
|
14 |
+
# Load dataset
|
15 |
+
dataset = load_dataset("tatsu-lab/alpaca", split="train")
|
16 |
+
|
17 |
+
|
18 |
+
def chatml_format(example):
|
19 |
+
"""Format the dataset for training, accounting for empty columns."""
|
20 |
+
return {
|
21 |
+
"instruction": example['instruction'] if 'instruction' in example else " \n",
|
22 |
+
"input": example['input'] if 'input' in example else " \n",
|
23 |
+
"system": example['system'] if 'system' in example else " \n",
|
24 |
+
"output": example['output'] if 'output' in example else " \n",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
# Format dataset
|
29 |
+
dataset = dataset.map(chatml_format, remove_columns=dataset.column_names)
|
30 |
+
|
31 |
+
# Define the model initialization function
|
32 |
+
def model_init(trial=None):
|
33 |
+
original = False
|
34 |
+
params = {}
|
35 |
+
if trial is not None:
|
36 |
+
n_ahead = 1
|
37 |
+
n_ahead_talk = 1
|
38 |
+
n_passes = 1
|
39 |
+
gumbel_temperature = 1
|
40 |
+
use_start_thought_token = True
|
41 |
+
use_end_thought_token = True
|
42 |
+
include_policy_loss = True
|
43 |
+
gumbel_detach = True
|
44 |
+
merged_talk_heads = True
|
45 |
+
residual_think_head = False
|
46 |
+
optimize_lm_head_only_at_start = False
|
47 |
+
|
48 |
+
model_id = "Crystalcareai/Quiet-Star-Custom"
|
49 |
+
tokenizer_id = model_id
|
50 |
+
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_id,
|
53 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
54 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
55 |
+
merged_talk_heads=merged_talk_heads,
|
56 |
+
merged_lm_and_talk_heads=False,
|
57 |
+
merged_lm_and_think_heads=True,
|
58 |
+
use_concat_talk_head=True,
|
59 |
+
use_shallow_think=True,
|
60 |
+
use_shallow_talk=False,
|
61 |
+
use_complex_think_head=False,
|
62 |
+
use_complex_talk_head=True,
|
63 |
+
use_weighted_talk_head=True,
|
64 |
+
trust_remote_code=True,
|
65 |
+
device_map="auto",
|
66 |
+
)
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding="left")
|
69 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
70 |
+
|
71 |
+
special_tokens_to_add = []
|
72 |
+
if model.use_start_thought_token:
|
73 |
+
special_tokens_to_add.append("<|startthought|>")
|
74 |
+
if model.use_end_thought_token:
|
75 |
+
special_tokens_to_add.append("<|endthought|>")
|
76 |
+
if special_tokens_to_add:
|
77 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
78 |
+
model.resize_token_embeddings(len(tokenizer))
|
79 |
+
model.tokenizer = tokenizer
|
80 |
+
for name, module in model.named_modules():
|
81 |
+
if "embed" in name:
|
82 |
+
print(module, flush=True)
|
83 |
+
|
84 |
+
model.gumbel_detach = gumbel_detach
|
85 |
+
model.include_policy_loss = include_policy_loss
|
86 |
+
model.use_end_thought_token = use_end_thought_token
|
87 |
+
model.use_start_thought_token = use_start_thought_token
|
88 |
+
model.n_ahead = n_ahead
|
89 |
+
model.n_ahead_talk = n_ahead_talk
|
90 |
+
model.n_passes = n_passes
|
91 |
+
model.residual_think_head = residual_think_head
|
92 |
+
model.gumbel_temperature = gumbel_temperature
|
93 |
+
model.original_mode = original
|
94 |
+
model.config_params = params
|
95 |
+
model.run_start = int(time.time())
|
96 |
+
model.train()
|
97 |
+
return model
|
98 |
+
|
99 |
+
# Define the objective function for Optuna
|
100 |
+
# Define the objective function for Optuna
|
101 |
+
def objective(trial):
|
102 |
+
# Hyperparameters to be optimized
|
103 |
+
learning_rate = trial.suggest_float("learning_rate", 1e-07, 1e-06, log=True)
|
104 |
+
max_grad_norm = trial.suggest_float("max_grad_norm", 0.3, 1.0)
|
105 |
+
warmup_steps = trial.suggest_int("warmup_steps", 0, 20)
|
106 |
+
gradient_accumulation_steps = trial.suggest_int("gradient_accumulation_steps", 4, 8)
|
107 |
+
|
108 |
+
model = model_init(trial)
|
109 |
+
|
110 |
+
training_args = TrainingArguments(
|
111 |
+
output_dir="./out",
|
112 |
+
num_train_epochs=3,
|
113 |
+
max_steps=30,
|
114 |
+
per_device_train_batch_size=1,
|
115 |
+
logging_steps=1,
|
116 |
+
optim="lion_32bit",
|
117 |
+
save_strategy="steps",
|
118 |
+
save_steps=3000,
|
119 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
120 |
+
learning_rate=learning_rate,
|
121 |
+
max_grad_norm=max_grad_norm,
|
122 |
+
warmup_steps=warmup_steps,
|
123 |
+
lr_scheduler_type="cosine",
|
124 |
+
report_to="none" # Disable reporting to avoid errors related to WandB in this context
|
125 |
+
)
|
126 |
+
|
127 |
+
trainer = SFTTrainer(
|
128 |
+
args=training_args,
|
129 |
+
train_dataset=dataset,
|
130 |
+
model=model,
|
131 |
+
tokenizer=model.tokenizer,
|
132 |
+
max_seq_length=1024,
|
133 |
+
dataset_text_field="output",
|
134 |
+
)
|
135 |
+
|
136 |
+
# Train the model and get the training loss
|
137 |
+
train_result = trainer.train()
|
138 |
+
loss = train_result.training_loss
|
139 |
+
|
140 |
+
return loss
|
141 |
+
|
142 |
+
|
143 |
+
# Create a study and optimize
|
144 |
+
study = optuna.create_study(storage="sqlite:///db.sqlite3")
|
145 |
+
study.optimize(objective, n_trials=100)
|
146 |
+
|
147 |
+
# Print the best trial
|
148 |
+
print("Best trial:")
|
149 |
+
trial = study.best_trial
|
150 |
+
print(f" Loss: {trial.value}")
|
151 |
+
print(" Params: ")
|
152 |
+
for key, value in trial.params.items():
|
153 |
+
print(f" {key}: {value}")
|
sft-dora-alpaca.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
3 |
+
import random
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import TrainingArguments
|
7 |
+
from trl import SFTTrainer
|
8 |
+
from peft import LoraConfig
|
9 |
+
# from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
|
10 |
+
from torch.nn import CrossEntropyLoss
|
11 |
+
|
12 |
+
import time
|
13 |
+
random_seed = 42
|
14 |
+
torch.manual_seed(random_seed)
|
15 |
+
random.seed(random_seed)
|
16 |
+
|
17 |
+
dataset = load_dataset("Vezora/Tested-22k-Python-Alpaca", split="train")
|
18 |
+
|
19 |
+
def chatml_format(example):
|
20 |
+
"""Format the dataset for training, accounting for empty columns."""
|
21 |
+
return {
|
22 |
+
"instruction": example['instruction'] if 'instruction' in example else " \n",
|
23 |
+
"input": example['input'] if 'input' in example else " \n",
|
24 |
+
"system": example['system'] if 'system' in example else " \n",
|
25 |
+
"output": example['output'] if 'output' in example else " \n",
|
26 |
+
}
|
27 |
+
|
28 |
+
# Format dataset
|
29 |
+
dataset = dataset.map(chatml_format, remove_columns=dataset.column_names)
|
30 |
+
|
31 |
+
n_ahead_talk_global = 4
|
32 |
+
n_passes_global = 2
|
33 |
+
n_ahead_global = 8
|
34 |
+
n_examples = 0
|
35 |
+
|
36 |
+
def model_init(params):
|
37 |
+
original = False
|
38 |
+
if params is None:
|
39 |
+
params = {}
|
40 |
+
else:
|
41 |
+
params = params.params
|
42 |
+
# save params to file
|
43 |
+
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
44 |
+
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
45 |
+
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
46 |
+
gumbel_temperature = params.get("gumbel_temperature", 1)
|
47 |
+
use_start_thought_token = params.get("use_start_thought_token", True)
|
48 |
+
use_end_thought_token = params.get("use_end_thought_token", True)
|
49 |
+
include_policy_loss = params.get("include_policy_loss", True)
|
50 |
+
gumbel_detach = params.get("gumbel_detach", True)
|
51 |
+
merged_talk_heads = params.get("merged_talk_heads", True)
|
52 |
+
residual_think_head = params.get("residual_think_head", False)
|
53 |
+
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
54 |
+
|
55 |
+
model_id = "Crystalcareai/Quiet-Star-Custom"
|
56 |
+
tokenizer_id = model_id
|
57 |
+
print("Loading model")
|
58 |
+
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
model_id,
|
61 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
62 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
63 |
+
merged_talk_heads=merged_talk_heads,
|
64 |
+
merged_lm_and_talk_heads=False,
|
65 |
+
merged_lm_and_think_heads=True,
|
66 |
+
use_concat_talk_head=True,
|
67 |
+
use_shallow_think=True,
|
68 |
+
use_shallow_talk=False,
|
69 |
+
use_complex_think_head=False,
|
70 |
+
use_complex_talk_head=True,
|
71 |
+
use_weighted_talk_head=True,
|
72 |
+
trust_remote_code=True,
|
73 |
+
device_map="auto",
|
74 |
+
)
|
75 |
+
print("Loaded model")
|
76 |
+
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
|
78 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
79 |
+
|
80 |
+
special_tokens_to_add = []
|
81 |
+
if model.use_start_thought_token:
|
82 |
+
special_tokens_to_add.append("<|startthought|>")
|
83 |
+
if model.use_end_thought_token:
|
84 |
+
special_tokens_to_add.append("<|endthought|>")
|
85 |
+
if special_tokens_to_add:
|
86 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
87 |
+
model.resize_token_embeddings(len(tokenizer))
|
88 |
+
model.tokenizer = tokenizer
|
89 |
+
for name, module in model.named_modules():
|
90 |
+
if "embed" in name:
|
91 |
+
print(module, flush=True)
|
92 |
+
|
93 |
+
model.gumbel_detach = gumbel_detach
|
94 |
+
model.include_policy_loss = include_policy_loss
|
95 |
+
model.use_end_thought_token = use_end_thought_token
|
96 |
+
model.use_start_thought_token = use_start_thought_token
|
97 |
+
model.n_ahead = n_ahead
|
98 |
+
model.n_ahead_talk = n_ahead_talk
|
99 |
+
model.n_passes = n_passes
|
100 |
+
model.residual_think_head = residual_think_head
|
101 |
+
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
102 |
+
model.gumbel_temperature = gumbel_temperature
|
103 |
+
model.original_mode = original
|
104 |
+
model.config_params = params
|
105 |
+
model.run_start = int(time.time())
|
106 |
+
model.train()
|
107 |
+
return model
|
108 |
+
|
109 |
+
max_seq_length = 1024
|
110 |
+
run_id = int(time.time())
|
111 |
+
training_args = TrainingArguments(
|
112 |
+
output_dir="./out",
|
113 |
+
num_train_epochs=3,
|
114 |
+
per_device_train_batch_size=1,
|
115 |
+
gradient_checkpointing=False,
|
116 |
+
gradient_accumulation_steps=8,
|
117 |
+
optim="lion_32bit",
|
118 |
+
logging_steps=1,
|
119 |
+
save_strategy="steps",
|
120 |
+
save_steps=300,
|
121 |
+
max_steps=1000,
|
122 |
+
bf16=True,
|
123 |
+
tf32=False,
|
124 |
+
learning_rate=6e-05,
|
125 |
+
max_grad_norm=0.3,
|
126 |
+
warmup_ratio=0.06,
|
127 |
+
lr_scheduler_type="cosine",
|
128 |
+
push_to_hub=False,
|
129 |
+
report_to="wandb"
|
130 |
+
)
|
131 |
+
|
132 |
+
peft_config = LoraConfig(
|
133 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
134 |
+
target_modules = ["q_proj", "k_proj"],
|
135 |
+
lora_alpha = 16,
|
136 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
137 |
+
bias = "none",
|
138 |
+
use_dora=True,
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
torch.autograd.set_detect_anomaly(True)
|
143 |
+
|
144 |
+
# Set the device for each process
|
145 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
146 |
+
# torch.cuda.set_device(device)
|
147 |
+
|
148 |
+
model = model_init(None) # Initialize the model
|
149 |
+
|
150 |
+
tokenizer = model.tokenizer
|
151 |
+
|
152 |
+
trainer = SFTTrainer(
|
153 |
+
args=training_args,
|
154 |
+
train_dataset=dataset,
|
155 |
+
model=model,
|
156 |
+
tokenizer=tokenizer,
|
157 |
+
max_seq_length=max_seq_length,
|
158 |
+
dataset_text_field="output",
|
159 |
+
peft_config=peft_config,
|
160 |
+
)
|
161 |
+
|
162 |
+
trainer.train()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|endthought|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<|startthought|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"bos_token": {
|
19 |
+
"content": "<s>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"eos_token": {
|
26 |
+
"content": "</s>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"pad_token": "</s>",
|
33 |
+
"unk_token": {
|
34 |
+
"content": "<unk>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
}
|
40 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endthought|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|startthought|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"additional_special_tokens": [
|
47 |
+
"<|endthought|>",
|
48 |
+
"<|startthought|>"
|
49 |
+
],
|
50 |
+
"bos_token": "<s>",
|
51 |
+
"clean_up_tokenization_spaces": false,
|
52 |
+
"eos_token": "</s>",
|
53 |
+
"legacy": true,
|
54 |
+
"model_max_length": 1000000000000000019884624838656,
|
55 |
+
"pad_token": "</s>",
|
56 |
+
"sp_model_kwargs": {},
|
57 |
+
"spaces_between_special_tokens": false,
|
58 |
+
"tokenizer_class": "LlamaTokenizer",
|
59 |
+
"unk_token": "<unk>",
|
60 |
+
"use_default_system_prompt": false
|
61 |
+
}
|
train-h100-sharegpt-sft.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
3 |
+
import random
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import TrainingArguments
|
7 |
+
from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
|
8 |
+
from trl import SFTTrainer
|
9 |
+
from peft import LoraConfig
|
10 |
+
from torch.nn import CrossEntropyLoss
|
11 |
+
import time
|
12 |
+
import gc
|
13 |
+
|
14 |
+
random_seed = 42
|
15 |
+
torch.manual_seed(random_seed)
|
16 |
+
random.seed(random_seed)
|
17 |
+
|
18 |
+
dataset = load_dataset("HuggingFaceH4/orca-math-word-problems-200k", split="train_sft").select(range(1000))
|
19 |
+
|
20 |
+
|
21 |
+
n_ahead_talk_global = 4
|
22 |
+
n_passes_global = 1
|
23 |
+
n_ahead_global = 4
|
24 |
+
# n_examples = 1000
|
25 |
+
# full_batch_size = 8
|
26 |
+
|
27 |
+
def model_init(params):
|
28 |
+
original = False
|
29 |
+
if params is None:
|
30 |
+
params = {}
|
31 |
+
else:
|
32 |
+
params = params.params
|
33 |
+
# save params to file
|
34 |
+
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
35 |
+
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
36 |
+
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
37 |
+
gumbel_temperature = params.get("gumbel_temperature", 1)
|
38 |
+
use_start_thought_token = params.get("use_start_thought_token", True)
|
39 |
+
use_end_thought_token = params.get("use_end_thought_token", True)
|
40 |
+
include_policy_loss = params.get("include_policy_loss", True)
|
41 |
+
gumbel_detach = params.get("gumbel_detach", True)
|
42 |
+
merged_talk_heads = params.get("merged_talk_heads", True)
|
43 |
+
residual_think_head = params.get("residual_think_head", False)
|
44 |
+
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
45 |
+
|
46 |
+
model_id = "Crystalcareai/Quiet-Star-Custom"
|
47 |
+
tokenizer_id = model_id
|
48 |
+
print("Loading model")
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_id,
|
52 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
53 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
54 |
+
merged_talk_heads=merged_talk_heads,
|
55 |
+
merged_lm_and_talk_heads=False,
|
56 |
+
merged_lm_and_think_heads=True,
|
57 |
+
use_concat_talk_head=True,
|
58 |
+
use_shallow_think=True,
|
59 |
+
use_shallow_talk=False,
|
60 |
+
use_complex_think_head=False,
|
61 |
+
use_complex_talk_head=True,
|
62 |
+
use_weighted_talk_head=True,
|
63 |
+
trust_remote_code=True,
|
64 |
+
device_map="auto",
|
65 |
+
)
|
66 |
+
print("Loaded model")
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
|
69 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
70 |
+
|
71 |
+
special_tokens_to_add = []
|
72 |
+
if model.use_start_thought_token:
|
73 |
+
special_tokens_to_add.append("<|startthought|>")
|
74 |
+
if model.use_end_thought_token:
|
75 |
+
special_tokens_to_add.append("<|endthought|>")
|
76 |
+
if special_tokens_to_add:
|
77 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
78 |
+
model.tokenizer = tokenizer
|
79 |
+
for name, module in model.named_modules():
|
80 |
+
if "embed" in name:
|
81 |
+
print(module, flush=True)
|
82 |
+
|
83 |
+
model.gumbel_detach = gumbel_detach
|
84 |
+
model.include_policy_loss = include_policy_loss
|
85 |
+
model.use_end_thought_token = use_end_thought_token
|
86 |
+
model.use_start_thought_token = use_start_thought_token
|
87 |
+
model.n_ahead = n_ahead
|
88 |
+
model.n_ahead_talk = n_ahead_talk
|
89 |
+
model.n_passes = n_passes
|
90 |
+
model.residual_think_head = residual_think_head
|
91 |
+
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
92 |
+
model.gumbel_temperature = gumbel_temperature
|
93 |
+
model.original_mode = original
|
94 |
+
model.config_params = params
|
95 |
+
model.run_start = int(time.time())
|
96 |
+
model.train()
|
97 |
+
return model
|
98 |
+
|
99 |
+
max_seq_length = 1024
|
100 |
+
run_id = int(time.time())
|
101 |
+
training_args = TrainingArguments(
|
102 |
+
output_dir="./out",
|
103 |
+
num_train_epochs=1,
|
104 |
+
per_device_train_batch_size=1,
|
105 |
+
gradient_checkpointing=False,
|
106 |
+
gradient_accumulation_steps=8,
|
107 |
+
optim="adamw_torch_fused",
|
108 |
+
logging_steps=1,
|
109 |
+
save_strategy="steps",
|
110 |
+
save_steps=100,
|
111 |
+
max_steps=-1,
|
112 |
+
# auto_find_batch_size=True,
|
113 |
+
weight_decay=0.001,
|
114 |
+
bf16=True,
|
115 |
+
|
116 |
+
tf32=True,
|
117 |
+
learning_rate=2e-10,
|
118 |
+
max_grad_norm=0,
|
119 |
+
warmup_steps=20,
|
120 |
+
lr_scheduler_type="cosine",
|
121 |
+
push_to_hub=False,
|
122 |
+
report_to="wandb"
|
123 |
+
)
|
124 |
+
|
125 |
+
peft_config = LoraConfig(
|
126 |
+
r = 8, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
127 |
+
target_modules =["q_proj", "v_proj"],
|
128 |
+
lora_alpha = 32,
|
129 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
130 |
+
bias = "none",
|
131 |
+
use_dora=True,
|
132 |
+
task_type="CAUSAL_LM"
|
133 |
+
)
|
134 |
+
|
135 |
+
torch.autograd.set_detect_anomaly(True)
|
136 |
+
|
137 |
+
# class CustomSFTTrainer(SFTTrainer):
|
138 |
+
# def __init__(self, *args, **kwargs):
|
139 |
+
# super().__init__(*args, **kwargs)
|
140 |
+
# self.beta = 0.9 # momentum factor
|
141 |
+
# self.clip_factor = 1.0 # clipping factor
|
142 |
+
# self.moving_avg = 0.0
|
143 |
+
|
144 |
+
# def training_step(self, model, inputs):
|
145 |
+
# model.train()
|
146 |
+
# inputs = self._prepare_inputs(inputs)
|
147 |
+
|
148 |
+
# outputs = model(**inputs)
|
149 |
+
# loss = outputs.loss if isinstance(outputs, dict) else outputs[0]
|
150 |
+
|
151 |
+
# if self.args.gradient_accumulation_steps > 1:
|
152 |
+
# loss = loss / self.args.gradient_accumulation_steps
|
153 |
+
|
154 |
+
# loss.backward()
|
155 |
+
|
156 |
+
# # Compute gradients and their norm
|
157 |
+
# grad_norm = torch.sqrt(sum(p.grad.data.norm().to(model.device)**2 for p in model.parameters() if p.grad is not None))
|
158 |
+
|
159 |
+
# # Update moving average and apply gradient clipping
|
160 |
+
# if self.state.global_step == 0:
|
161 |
+
# self.moving_avg = grad_norm
|
162 |
+
# else:
|
163 |
+
# self.moving_avg = self.beta * self.moving_avg + (1 - self.beta) * grad_norm
|
164 |
+
|
165 |
+
# if grad_norm > self.clip_factor * self.moving_avg:
|
166 |
+
# clip_coef = (self.clip_factor * self.moving_avg / grad_norm).item()
|
167 |
+
# for param in model.parameters():
|
168 |
+
# if param.grad is not None:
|
169 |
+
# param.grad.data.mul_(clip_coef)
|
170 |
+
|
171 |
+
# if (self.state.global_step + 1) % self.args.gradient_accumulation_steps == 0:
|
172 |
+
# self.optimizer.step()
|
173 |
+
# self.lr_scheduler.step()
|
174 |
+
# model.zero_grad()
|
175 |
+
# self.state.global_step += 1
|
176 |
+
|
177 |
+
# # Return the loss as a Tensor
|
178 |
+
# return loss
|
179 |
+
|
180 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
181 |
+
|
182 |
+
model = model_init(None)
|
183 |
+
|
184 |
+
trainer = SFTTrainer(
|
185 |
+
model=model,
|
186 |
+
args=training_args,
|
187 |
+
train_dataset=dataset,
|
188 |
+
tokenizer=model.tokenizer,
|
189 |
+
max_seq_length=max_seq_length,
|
190 |
+
peft_config=peft_config,
|
191 |
+
)
|
192 |
+
|
193 |
+
trainer.train()
|