petrznel commited on
Commit
0085ed2
·
1 Parent(s): 3150dc5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: blurred_landmarks
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: landmarks
19
+ split: validation
20
+ args: landmarks
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9645365168539326
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # blurred_landmarks
31
+
32
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1152
35
+ - Accuracy: 0.9645
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.6588 | 1.0 | 357 | 0.6460 | 0.7707 |
70
+ | 0.3752 | 2.0 | 714 | 0.2969 | 0.8933 |
71
+ | 0.3275 | 3.0 | 1071 | 0.1912 | 0.9319 |
72
+ | 0.2183 | 4.0 | 1429 | 0.1794 | 0.9305 |
73
+ | 0.2133 | 5.0 | 1786 | 0.1638 | 0.9414 |
74
+ | 0.1984 | 6.0 | 2143 | 0.1322 | 0.9484 |
75
+ | 0.1409 | 7.0 | 2500 | 0.1304 | 0.9529 |
76
+ | 0.1864 | 8.0 | 2858 | 0.1212 | 0.9572 |
77
+ | 0.1778 | 9.0 | 3215 | 0.1216 | 0.9540 |
78
+ | 0.1734 | 10.0 | 3572 | 0.1129 | 0.9593 |
79
+ | 0.1349 | 11.0 | 3929 | 0.1127 | 0.9614 |
80
+ | 0.1057 | 12.0 | 4287 | 0.1177 | 0.9582 |
81
+ | 0.1434 | 13.0 | 4644 | 0.1153 | 0.9603 |
82
+ | 0.0832 | 14.0 | 5001 | 0.1264 | 0.9593 |
83
+ | 0.0963 | 15.0 | 5358 | 0.1146 | 0.9607 |
84
+ | 0.0642 | 16.0 | 5716 | 0.1135 | 0.9635 |
85
+ | 0.0763 | 17.0 | 6073 | 0.1210 | 0.9614 |
86
+ | 0.0432 | 18.0 | 6430 | 0.1162 | 0.9645 |
87
+ | 0.0618 | 19.0 | 6787 | 0.1269 | 0.9600 |
88
+ | 0.049 | 19.99 | 7140 | 0.1152 | 0.9645 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.30.0.dev0
94
+ - Pytorch 1.13.0
95
+ - Datasets 2.10.1
96
+ - Tokenizers 0.11.0