peter2000 commited on
Commit
aa3e8ea
·
1 Parent(s): ad5cbd6

Pushing tsdae fine tuned model

Browse files

Model trained on 500k policy sentencey

Files changed (1) hide show
  1. README.md +123 -0
README.md ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
+
45
+
46
+ def cls_pooling(model_output, attention_mask):
47
+ return model_output[0][:,0]
48
+
49
+
50
+ # Sentences we want sentence embeddings for
51
+ sentences = ['This is an example sentence', 'Each sentence is converted']
52
+
53
+ # Load model from HuggingFace Hub
54
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
55
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
56
+
57
+ # Tokenize sentences
58
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
59
+
60
+ # Compute token embeddings
61
+ with torch.no_grad():
62
+ model_output = model(**encoded_input)
63
+
64
+ # Perform pooling. In this case, cls pooling.
65
+ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
66
+
67
+ print("Sentence embeddings:")
68
+ print(sentence_embeddings)
69
+ ```
70
+
71
+
72
+
73
+ ## Evaluation Results
74
+
75
+ <!--- Describe how your model was evaluated -->
76
+
77
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
78
+
79
+
80
+ ## Training
81
+ The model was trained with the parameters:
82
+
83
+ **DataLoader**:
84
+
85
+ `torch.utils.data.dataloader.DataLoader` of length 5182 with parameters:
86
+ ```
87
+ {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
88
+ ```
89
+
90
+ **Loss**:
91
+
92
+ `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss`
93
+
94
+ Parameters of the fit()-Method:
95
+ ```
96
+ {
97
+ "epochs": 1,
98
+ "evaluation_steps": 0,
99
+ "evaluator": "NoneType",
100
+ "max_grad_norm": 1,
101
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
102
+ "optimizer_params": {
103
+ "lr": 3e-05
104
+ },
105
+ "scheduler": "constantlr",
106
+ "steps_per_epoch": null,
107
+ "warmup_steps": 10000,
108
+ "weight_decay": 0
109
+ }
110
+ ```
111
+
112
+
113
+ ## Full Model Architecture
114
+ ```
115
+ SentenceTransformer(
116
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
117
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
118
+ )
119
+ ```
120
+
121
+ ## Citing & Authors
122
+
123
+ <!--- Describe where people can find more information -->