peter1133 commited on
Commit
f56bb58
·
1 Parent(s): 38a6914

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.58 +/- 0.87
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.57 +/- 0.56
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cf7b737313c95274f982189d266acad84a1af4e6b6c98bb75796445fbb6563a3
3
- size 108107
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7227eea83b7577af0e0bb4cc09285aca6d7a1ee1dfba051d9c25da0a442573a1
3
+ size 107754
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5b535a34c0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f5b53599de0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1000000,
45
- "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1674097648477840148,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArW+/PtWoxLzmyRA/rW+/PtWoxLzmyRA/rW+/PtWoxLzmyRA/rW+/PtWoxLzmyRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAbi3PkcPaD7M3Vi/GZxxvo8Dfr+1zDQ/u5ktPyQDej89MZm/E2oZvtxBjD/Mru6+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACtb78+1ajEvObJED8V+221BH+Qum7wEjytb78+1ajEvObJED8V+221BH+Qum7wEjytb78+1ajEvObJED8V+221BH+Qum7wEjytb78+1ajEvObJED8V+221BH+Qum7wEjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 0.3738989 -0.02400629 0.5655807 ]\n [ 0.3738989 -0.02400629 0.5655807 ]\n [ 0.3738989 -0.02400629 0.5655807 ]\n [ 0.3738989 -0.02400629 0.5655807 ]]",
60
- "desired_goal": "[[ 0.3588257 0.22662078 -0.84713435]\n [-0.23594703 -0.9922418 0.7062486 ]\n [ 0.678127 0.9766104 -1.1968151 ]\n [-0.1498187 1.0957599 -0.46617734]]",
61
- "observation": "[[ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]\n [ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]\n [ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]\n [ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+47gvQsLAj3gNtc9fF2wPWHbRr3X8pA+rWCXPUPtcLtbeYc+Tu1YPQBjBL67Jx0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.10964771 0.03174881 0.10508513]\n [ 0.08611581 -0.04854906 0.28310272]\n [ 0.07391486 -0.00367625 0.26459774]\n [ 0.05296069 -0.1292839 0.15347187]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbt3NUx1iFMCUhpRSlIwBbJRLMowBdJRHQKRjO3n6l+F1fZQoaAZoCWgPQwhgrG9gcuMGwJSGlFKUaBVLMmgWR0CkYwH4oJAudX2UKGgGaAloD0MIY0LMJVULEMCUhpRSlGgVSzJoFkdApGLGZiNKiHV9lChoBmgJaA9DCGR0QBL27QbAlIaUUpRoFUsyaBZHQKRijBzFMqV1fZQoaAZoCWgPQwgFNufgmTAJwJSGlFKUaBVLMmgWR0CkZCXfyf+TdX2UKGgGaAloD0MILJ56pMENF8CUhpRSlGgVSzJoFkdApGPsGxD9fnV9lChoBmgJaA9DCP3a+uk/SwbAlIaUUpRoFUsyaBZHQKRjsIUrTYx1fZQoaAZoCWgPQwgcB14td+YXwJSGlFKUaBVLMmgWR0CkY3XdTHbRdX2UKGgGaAloD0MISino9pJ2E8CUhpRSlGgVSzJoFkdApGURnxri2nV9lChoBmgJaA9DCO8fC9EhQBvAlIaUUpRoFUsyaBZHQKRk19AooeB1fZQoaAZoCWgPQwizQ/zDlh4HwJSGlFKUaBVLMmgWR0CkZJw1zhgmdX2UKGgGaAloD0MIwvwVMlcmFMCUhpRSlGgVSzJoFkdApGRhl+Vkc3V9lChoBmgJaA9DCB+DFadaaxLAlIaUUpRoFUsyaBZHQKRl9Hfdhy91fZQoaAZoCWgPQwgxsmSO5b0LwJSGlFKUaBVLMmgWR0CkZbq5TZQIdX2UKGgGaAloD0MIc5zbhHslB8CUhpRSlGgVSzJoFkdApGV/J3gUDnV9lChoBmgJaA9DCKsGYW73MhDAlIaUUpRoFUsyaBZHQKRlRH6Mzdl1fZQoaAZoCWgPQwhEiZY8ntYPwJSGlFKUaBVLMmgWR0CkZusajvd/dX2UKGgGaAloD0MIqRQ7Goe6AMCUhpRSlGgVSzJoFkdApGaxRXOnmHV9lChoBmgJaA9DCBlZMsfyzg3AlIaUUpRoFUsyaBZHQKRmdbB42TB1fZQoaAZoCWgPQwghlWJH40ATwJSGlFKUaBVLMmgWR0CkZjryUcGUdX2UKGgGaAloD0MI1EUKZeGrA8CUhpRSlGgVSzJoFkdApGfVyBClanV9lChoBmgJaA9DCKMgeHx7hxHAlIaUUpRoFUsyaBZHQKRnnFKkEcN1fZQoaAZoCWgPQwj0/j9OmOAYwJSGlFKUaBVLMmgWR0CkZ2DOLR8ddX2UKGgGaAloD0MIZRpNLsYgDsCUhpRSlGgVSzJoFkdApGcmGdqcmXV9lChoBmgJaA9DCEsFFVW/QhHAlIaUUpRoFUsyaBZHQKRoxltCRfZ1fZQoaAZoCWgPQwhSmWIOgu4TwJSGlFKUaBVLMmgWR0CkaIzY287IdX2UKGgGaAloD0MIDLJl+bqcE8CUhpRSlGgVSzJoFkdApGhRTbWVeXV9lChoBmgJaA9DCItrfCb7ZwjAlIaUUpRoFUsyaBZHQKRoFowmE5B1fZQoaAZoCWgPQwiy2ZHqO18SwJSGlFKUaBVLMmgWR0CkaaJy6tkndX2UKGgGaAloD0MIvhJIiV17EsCUhpRSlGgVSzJoFkdApGloskIHDHV9lChoBmgJaA9DCPfJUYAoGAvAlIaUUpRoFUsyaBZHQKRpLSgGr0d1fZQoaAZoCWgPQwjxftx++UQIwJSGlFKUaBVLMmgWR0CkaPJ1A7gbdX2UKGgGaAloD0MIcJf9utMtEMCUhpRSlGgVSzJoFkdApGqStvGZNXV9lChoBmgJaA9DCEXXhR+crxLAlIaUUpRoFUsyaBZHQKRqWPGyX2N1fZQoaAZoCWgPQwg/WMaGbhYNwJSGlFKUaBVLMmgWR0Ckah1kMCtBdX2UKGgGaAloD0MIJjYf14b6EsCUhpRSlGgVSzJoFkdApGni6UaAF3V9lChoBmgJaA9DCAHD8ufbwgXAlIaUUpRoFUsyaBZHQKRrhbUPQOZ1fZQoaAZoCWgPQwgTZARUOCIJwJSGlFKUaBVLMmgWR0Cka0wsoUi7dX2UKGgGaAloD0MIMC/APjq1HMCUhpRSlGgVSzJoFkdApGsQ8GLUC3V9lChoBmgJaA9DCMAg6dMqOhvAlIaUUpRoFUsyaBZHQKRq1mknCwd1fZQoaAZoCWgPQwgdrP9zmC8FwJSGlFKUaBVLMmgWR0CkbH9zfaYedX2UKGgGaAloD0MITpzc71C0BMCUhpRSlGgVSzJoFkdApGxFlCkXUHV9lChoBmgJaA9DCJIHIos0oRfAlIaUUpRoFUsyaBZHQKRsCvlEJBx1fZQoaAZoCWgPQwhwCFVq9qAOwJSGlFKUaBVLMmgWR0Cka9BOxjaxdX2UKGgGaAloD0MIPYIbKVtkCMCUhpRSlGgVSzJoFkdApG1xY/3WWnV9lChoBmgJaA9DCMx9chQgGhjAlIaUUpRoFUsyaBZHQKRtN49HMEB1fZQoaAZoCWgPQwh9y5wui+kFwJSGlFKUaBVLMmgWR0CkbPwgLZzxdX2UKGgGaAloD0MImGiQgqfwA8CUhpRSlGgVSzJoFkdApGzBcmjTKHV9lChoBmgJaA9DCEDc1avIKATAlIaUUpRoFUsyaBZHQKRuZ+qBErp1fZQoaAZoCWgPQwiFBfcDHrgFwJSGlFKUaBVLMmgWR0Ckbi6qCHymdX2UKGgGaAloD0MIUaT7OQUZCMCUhpRSlGgVSzJoFkdApG3zOJLuhXV9lChoBmgJaA9DCDoDIy9rogrAlIaUUpRoFUsyaBZHQKRtuH1OCXh1fZQoaAZoCWgPQwhtxmmIKlwNwJSGlFKUaBVLMmgWR0Ckb3Dxb0OFdX2UKGgGaAloD0MIKjv9oC7iF8CUhpRSlGgVSzJoFkdApG83V5KODXV9lChoBmgJaA9DCNcYdELowBXAlIaUUpRoFUsyaBZHQKRu/AuZkTZ1fZQoaAZoCWgPQwgi/fZ14BwOwJSGlFKUaBVLMmgWR0CkbsGoaUA1dX2UKGgGaAloD0MIQUXVr3Q+EcCUhpRSlGgVSzJoFkdApHB3OObRW3V9lChoBmgJaA9DCNk/TwMGSRvAlIaUUpRoFUsyaBZHQKRwPaq0dBB1fZQoaAZoCWgPQwi5cvbOaHsYwJSGlFKUaBVLMmgWR0CkcAN0FKTTdX2UKGgGaAloD0MIvTYbKzE/GMCUhpRSlGgVSzJoFkdApG/JGax5cHV9lChoBmgJaA9DCBhcc0f/mxDAlIaUUpRoFUsyaBZHQKRxf6xgRbt1fZQoaAZoCWgPQwhi3A2itaIJwJSGlFKUaBVLMmgWR0CkcUXb/Ot5dX2UKGgGaAloD0MI+I2vPbOUFcCUhpRSlGgVSzJoFkdApHEK9EkSmXV9lChoBmgJaA9DCAAapUv/IhTAlIaUUpRoFUsyaBZHQKRw0HxjJ+51fZQoaAZoCWgPQwjnj2ltGnsHwJSGlFKUaBVLMmgWR0Ckcmd9lVcVdX2UKGgGaAloD0MIvf4kPnciCsCUhpRSlGgVSzJoFkdApHItoFmnO3V9lChoBmgJaA9DCJYIVP8g8g7AlIaUUpRoFUsyaBZHQKRx8jpLVWl1fZQoaAZoCWgPQwiM22gAbwEXwJSGlFKUaBVLMmgWR0CkcbeotL+QdX2UKGgGaAloD0MIiPVGrTDdEsCUhpRSlGgVSzJoFkdApHNKpNsWPHV9lChoBmgJaA9DCDnyQGSRBgPAlIaUUpRoFUsyaBZHQKRzENipeeF1fZQoaAZoCWgPQwicGf1oOAUHwJSGlFKUaBVLMmgWR0CkctVmJ3xGdX2UKGgGaAloD0MIaVch5SflEcCUhpRSlGgVSzJoFkdApHKaqsEJSnV9lChoBmgJaA9DCLgCCvX0kRnAlIaUUpRoFUsyaBZHQKR0O05U96l1fZQoaAZoCWgPQwj2QCswZHURwJSGlFKUaBVLMmgWR0CkdAGATZg5dX2UKGgGaAloD0MIzJpY4Cv6CsCUhpRSlGgVSzJoFkdApHPF3hXKbXV9lChoBmgJaA9DCEwZOKClaxfAlIaUUpRoFUsyaBZHQKRzi0dilSF1fZQoaAZoCWgPQwgRGOsbmEwWwJSGlFKUaBVLMmgWR0CkdSkgntv5dX2UKGgGaAloD0MIUS6NX3hlC8CUhpRSlGgVSzJoFkdApHTvSx7iQ3V9lChoBmgJaA9DCGiz6nO1lQ3AlIaUUpRoFUsyaBZHQKR0s7dznzR1fZQoaAZoCWgPQwhagLbVrFMSwJSGlFKUaBVLMmgWR0CkdHkcCHRDdX2UKGgGaAloD0MImWa610m9EcCUhpRSlGgVSzJoFkdApHYlZowmFHV9lChoBmgJaA9DCN3SakjcAxfAlIaUUpRoFUsyaBZHQKR168qWkad1fZQoaAZoCWgPQwjwayQJwrUSwJSGlFKUaBVLMmgWR0CkdbCMHbAUdX2UKGgGaAloD0MItcAeEymNEcCUhpRSlGgVSzJoFkdApHV17D2rXHV9lChoBmgJaA9DCCvAd5s3fhHAlIaUUpRoFUsyaBZHQKR3Elk6Lfl1fZQoaAZoCWgPQwibApmdRW8JwJSGlFKUaBVLMmgWR0CkdtiGN70GdX2UKGgGaAloD0MId4U+WMYGDMCUhpRSlGgVSzJoFkdApHac7wKBunV9lChoBmgJaA9DCOrQ6Xk31hzAlIaUUpRoFUsyaBZHQKR2YinpB5Z1fZQoaAZoCWgPQwgJ3/sbtLcXwJSGlFKUaBVLMmgWR0CkeACvgWJrdX2UKGgGaAloD0MIfepYpfQMCcCUhpRSlGgVSzJoFkdApHfHHq/ucHV9lChoBmgJaA9DCAiUTbnC6xDAlIaUUpRoFUsyaBZHQKR3i9jgAIZ1fZQoaAZoCWgPQwgN5NnlW+chwJSGlFKUaBVLMmgWR0Ckd1FKCg9NdX2UKGgGaAloD0MIryE4LuOmDMCUhpRSlGgVSzJoFkdApHjpiobXH3V9lChoBmgJaA9DCI1+NJwyVwvAlIaUUpRoFUsyaBZHQKR4r69kBjp1fZQoaAZoCWgPQwjIBtLFptUHwJSGlFKUaBVLMmgWR0CkeHQVTJhfdX2UKGgGaAloD0MIgbG+gcmdH8CUhpRSlGgVSzJoFkdApHg5eC04R3V9lChoBmgJaA9DCFth+l5DYBDAlIaUUpRoFUsyaBZHQKR500Mw1zh1fZQoaAZoCWgPQwgLYwtBDuoKwJSGlFKUaBVLMmgWR0CkeZmNaQmvdX2UKGgGaAloD0MIKCfaVUiJEsCUhpRSlGgVSzJoFkdApHleD15B1XV9lChoBmgJaA9DCGDJVSx+kwTAlIaUUpRoFUsyaBZHQKR5I06YE4h1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0dedbab670>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f0dedba7540>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 580000,
45
+ "_total_timesteps": 580000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1674133256200898024,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhYfaPo+oAz1tRA8/hYfaPo+oAz1tRA8/hYfaPo+oAz1tRA8/hYfaPo+oAz1tRA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVp7FvxQEf7/Bg8i9uWQaPxDb9z6wKQ2/0tqNv7Xuhr8ZSwu/BuSUvacRFb6+vmo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.42681518 0.03214317 0.55963784]\n [0.42681518 0.03214317 0.55963784]\n [0.42681518 0.03214317 0.55963784]\n [0.42681518 0.03214317 0.55963784]]",
60
+ "desired_goal": "[[-1.5438945 -0.996156 -0.09790755]\n [ 0.6030994 0.4840932 -0.55141735]\n [-1.1082404 -1.0541598 -0.54411465]\n [-0.07270055 -0.14557515 0.05731081]]",
61
+ "observation": "[[ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]\n [ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]\n [ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]\n [ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz2qcvchbFb5joEc9Zds2PH7UED6RG4Q+OPDoPd92MjxAcHc+AKqgPM5AkT2Afx4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.0763756 -0.14585793 0.04873694]\n [ 0.01116071 0.1414356 0.25802281]\n [ 0.11373943 0.0108926 0.24163914]\n [ 0.01961231 0.07092439 0.15478325]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqZ83Falw/r+UhpRSlIwBbJRLMowBdJRHQJqTxZbILgJ1fZQoaAZoCWgPQwinBMQkXGgAwJSGlFKUaBVLMmgWR0CakoYvWYnfdX2UKGgGaAloD0MIPKHXn8SHAsCUhpRSlGgVSzJoFkdAmpEXh4t6HHV9lChoBmgJaA9DCLsPQGoTp/m/lIaUUpRoFUsyaBZHQJqPoutfXwt1fZQoaAZoCWgPQwi/nq9ZLvsBwJSGlFKUaBVLMmgWR0CalfG2TgVHdX2UKGgGaAloD0MI226Cb5oeBMCUhpRSlGgVSzJoFkdAmpSy3G4qgHV9lChoBmgJaA9DCPay7bQ1Ag7AlIaUUpRoFUsyaBZHQJqTRDD0lJJ1fZQoaAZoCWgPQwgtliL5SqAAwJSGlFKUaBVLMmgWR0Cakc+QEIPcdX2UKGgGaAloD0MIAcPy59tC9r+UhpRSlGgVSzJoFkdAmpgbi++M63V9lChoBmgJaA9DCHjxftx++QPAlIaUUpRoFUsyaBZHQJqW3B1s+FF1fZQoaAZoCWgPQwhh/DTuzW/0v5SGlFKUaBVLMmgWR0CalW0b961LdX2UKGgGaAloD0MIILjKEwj7/b+UhpRSlGgVSzJoFkdAmpP4bGWD6HV9lChoBmgJaA9DCDdQ4J18uv6/lIaUUpRoFUsyaBZHQJqaSJEYwZh1fZQoaAZoCWgPQwgOhc/WwaEBwJSGlFKUaBVLMmgWR0CamQkwevIPdX2UKGgGaAloD0MIaqSl8nakBMCUhpRSlGgVSzJoFkdAmpeaOT7l73V9lChoBmgJaA9DCCUgJuFCngLAlIaUUpRoFUsyaBZHQJqWJYvFm4B1fZQoaAZoCWgPQwhvZ195kJ4DwJSGlFKUaBVLMmgWR0CanG1LJ0W/dX2UKGgGaAloD0MI1nPS+8b3C8CUhpRSlGgVSzJoFkdAmpst1p0wJ3V9lChoBmgJaA9DCOs3E9OFGP+/lIaUUpRoFUsyaBZHQJqZvsyBTXJ1fZQoaAZoCWgPQwi4PxcNGQ8QwJSGlFKUaBVLMmgWR0CamEpC8e0YdX2UKGgGaAloD0MIpdsSueAM+7+UhpRSlGgVSzJoFkdAmp63EZR8+nV9lChoBmgJaA9DCJP8iF+xRgTAlIaUUpRoFUsyaBZHQJqdeCxu89R1fZQoaAZoCWgPQwgwhJz3/9EKwJSGlFKUaBVLMmgWR0CanAkpZwGXdX2UKGgGaAloD0MI06HT827MAsCUhpRSlGgVSzJoFkdAmpqUdJaq0nV9lChoBmgJaA9DCKNzforjAAjAlIaUUpRoFUsyaBZHQJqg2cSXdCV1fZQoaAZoCWgPQwjkFB3J5R8CwJSGlFKUaBVLMmgWR0Can5pBomG/dX2UKGgGaAloD0MIQfM5d7u+AcCUhpRSlGgVSzJoFkdAmp4rdJrckHV9lChoBmgJaA9DCHszar5KPgLAlIaUUpRoFUsyaBZHQJqct1wHZ9N1fZQoaAZoCWgPQwgAjdKlf0kHwJSGlFKUaBVLMmgWR0Caoxtw71ZldX2UKGgGaAloD0MIbCbfbHPjAsCUhpRSlGgVSzJoFkdAmqHcAaNuL3V9lChoBmgJaA9DCEMaFTjZhvy/lIaUUpRoFUsyaBZHQJqgbP8hs691fZQoaAZoCWgPQwgouFhRg8kIwJSGlFKUaBVLMmgWR0CanvhIe5nUdX2UKGgGaAloD0MI0m70MR8wDsCUhpRSlGgVSzJoFkdAmqVCmygPE3V9lChoBmgJaA9DCF0XfnA+Nf+/lIaUUpRoFUsyaBZHQJqkAzFdcB51fZQoaAZoCWgPQwg7bvjddKsGwJSGlFKUaBVLMmgWR0CaopRLsa86dX2UKGgGaAloD0MItOcyNQn+CcCUhpRSlGgVSzJoFkdAmqEf+fh/AnV9lChoBmgJaA9DCF6DvvT25wfAlIaUUpRoFUsyaBZHQJqnmocaOxV1fZQoaAZoCWgPQwjBOo4fKk3+v5SGlFKUaBVLMmgWR0CaplsqJ/G3dX2UKGgGaAloD0MIb9kh/mErAMCUhpRSlGgVSzJoFkdAmqTsJpnHvXV9lChoBmgJaA9DCJ2bNuM0hP6/lIaUUpRoFUsyaBZHQJqjd5cC5mR1fZQoaAZoCWgPQwgEc/T4vW0FwJSGlFKUaBVLMmgWR0CaqakPMB6sdX2UKGgGaAloD0MILnB5rBlZ/b+UhpRSlGgVSzJoFkdAmqhp6yB063V9lChoBmgJaA9DCM5uLZPheAHAlIaUUpRoFUsyaBZHQJqm+ubI91V1fZQoaAZoCWgPQwidmzbjNMT8v5SGlFKUaBVLMmgWR0CapYYzi0fHdX2UKGgGaAloD0MIU5PgDWl0D8CUhpRSlGgVSzJoFkdAmqvkFr2xp3V9lChoBmgJaA9DCIOmJVZGYwTAlIaUUpRoFUsyaBZHQJqqpIf8uSR1fZQoaAZoCWgPQwhVvmckQkMKwJSGlFKUaBVLMmgWR0CaqTWLgn+idX2UKGgGaAloD0MIDmYTYFh+BcCUhpRSlGgVSzJoFkdAmqfBCY1HfHV9lChoBmgJaA9DCDBl4ICWbgTAlIaUUpRoFUsyaBZHQJqt7Rc/t6Z1fZQoaAZoCWgPQwhtOZfiqtIDwJSGlFKUaBVLMmgWR0CarK2SdOIqdX2UKGgGaAloD0MI/KcbKPCOAMCUhpRSlGgVSzJoFkdAmqs+ieumrXV9lChoBmgJaA9DCFsLs9DOyQXAlIaUUpRoFUsyaBZHQJqpynuRcNZ1fZQoaAZoCWgPQwjKqZ1haosBwJSGlFKUaBVLMmgWR0CasDCw8nuzdX2UKGgGaAloD0MIlBYuq7B5A8CUhpRSlGgVSzJoFkdAmq7yn+AEuHV9lChoBmgJaA9DCOkPzTy5JgzAlIaUUpRoFUsyaBZHQJqtg9Net0V1fZQoaAZoCWgPQwg6WP/nMF8IwJSGlFKUaBVLMmgWR0CarA8a4tpVdX2UKGgGaAloD0MIGa95VWfVCsCUhpRSlGgVSzJoFkdAmrJV5GBnSXV9lChoBmgJaA9DCCandoapLQPAlIaUUpRoFUsyaBZHQJqxFm8M/hV1fZQoaAZoCWgPQwhUq6+uCpQEwJSGlFKUaBVLMmgWR0Car6dszl90dX2UKGgGaAloD0MIenB31m67AcCUhpRSlGgVSzJoFkdAmq4zB68g6nV9lChoBmgJaA9DCFeUEoJVdQLAlIaUUpRoFUsyaBZHQJq0rAbhm5F1fZQoaAZoCWgPQwheoKTAArgCwJSGlFKUaBVLMmgWR0Cas22S+xnndX2UKGgGaAloD0MILoz0onY/AMCUhpRSlGgVSzJoFkdAmrH+pXIU8HV9lChoBmgJaA9DCGPshJfgFAjAlIaUUpRoFUsyaBZHQJqwimbb1yx1fZQoaAZoCWgPQwhJ88e0Ns0PwJSGlFKUaBVLMmgWR0CatuaXa8HwdX2UKGgGaAloD0MIlkBK7NqeCsCUhpRSlGgVSzJoFkdAmrWnWJ79h3V9lChoBmgJaA9DCE0xB0FHSwnAlIaUUpRoFUsyaBZHQJq0OGi5/b11fZQoaAZoCWgPQwgFwePbu8YFwJSGlFKUaBVLMmgWR0CassQbdadMdX2UKGgGaAloD0MIT8sPXOWpCcCUhpRSlGgVSzJoFkdAmrjLLIPsiXV9lChoBmgJaA9DCLE08KMaFgjAlIaUUpRoFUsyaBZHQJq3i6BiCrd1fZQoaAZoCWgPQwjcZirEIxEHwJSGlFKUaBVLMmgWR0Cathx+8XendX2UKGgGaAloD0MIP3PWpxxTBsCUhpRSlGgVSzJoFkdAmrSoP5HmR3V9lChoBmgJaA9DCB8RUyKJ/gPAlIaUUpRoFUsyaBZHQJq6rCVKPGR1fZQoaAZoCWgPQwjgaMcNv/sEwJSGlFKUaBVLMmgWR0CauWyLAHmjdX2UKGgGaAloD0MIgJnv4CdOBsCUhpRSlGgVSzJoFkdAmrf9dRiw0XV9lChoBmgJaA9DCI8X0uEhTPu/lIaUUpRoFUsyaBZHQJq2iKuSwGJ1fZQoaAZoCWgPQwhZpl8i3jr9v5SGlFKUaBVLMmgWR0CavLobn5i3dX2UKGgGaAloD0MIGVbxRuYRAMCUhpRSlGgVSzJoFkdAmrt6xxDLKXV9lChoBmgJaA9DCMLaGDvhRQHAlIaUUpRoFUsyaBZHQJq6C+RHPNV1fZQoaAZoCWgPQwhT7Ggc6pcAwJSGlFKUaBVLMmgWR0CauJdYnv2HdX2UKGgGaAloD0MIM1LvqZz2B8CUhpRSlGgVSzJoFkdAmr6vWDpTuXV9lChoBmgJaA9DCIrNx7WhQgbAlIaUUpRoFUsyaBZHQJq9cDEFW4p1fZQoaAZoCWgPQwiS5o9pbZoKwJSGlFKUaBVLMmgWR0CavAEkjX4CdX2UKGgGaAloD0MIlfJaCd0FBsCUhpRSlGgVSzJoFkdAmrqMY2sJY3V9lChoBmgJaA9DCE4LXvQVRAbAlIaUUpRoFUsyaBZHQJrAko7V8Tl1fZQoaAZoCWgPQwjXbVD7rT0DwJSGlFKUaBVLMmgWR0Cav1L9uP3jdX2UKGgGaAloD0MIinQ/pyB//7+UhpRSlGgVSzJoFkdAmr3j5TIeYHV9lChoBmgJaA9DCLDKhcq/lvq/lIaUUpRoFUsyaBZHQJq8byz5XU91fZQoaAZoCWgPQwiR8/4/Tlj/v5SGlFKUaBVLMmgWR0CawnpnHvMKdX2UKGgGaAloD0MIqg65GW5ABsCUhpRSlGgVSzJoFkdAmsE7sv7FbXV9lChoBmgJaA9DCEZ9kjtsYv2/lIaUUpRoFUsyaBZHQJq/zKgZjx11fZQoaAZoCWgPQwgyOEpeneP+v5SGlFKUaBVLMmgWR0Cavlfk3juKdX2UKGgGaAloD0MIkj8YeO79/b+UhpRSlGgVSzJoFkdAmsSP7vXsgXV9lChoBmgJaA9DCHV4COOnkQnAlIaUUpRoFUsyaBZHQJrDUImgJ1J1fZQoaAZoCWgPQwgK98q8VZcAwJSGlFKUaBVLMmgWR0CaweHmRvFWdX2UKGgGaAloD0MIc2iR7XxfA8CUhpRSlGgVSzJoFkdAmsBtWdVebHV9lChoBmgJaA9DCEuQEVDhqAPAlIaUUpRoFUsyaBZHQJrGu5UcXFd1fZQoaAZoCWgPQwhvRs1XyQcBwJSGlFKUaBVLMmgWR0CaxXzRQaaTdX2UKGgGaAloD0MI5+Jve4IkCsCUhpRSlGgVSzJoFkdAmsQOUt7KJXV9lChoBmgJaA9DCOVDUDV69QHAlIaUUpRoFUsyaBZHQJrCmdK/VRV1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 29000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee2dc0faea58d8a6be95cf817c0ef1669ac1b2683276f45bbf370324597efdd5
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:723cd091817d486c0300168d80eb3266e050c67b6f4d2bc0a0d99fd633a788cd
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:999fc10917c605ba3c997bcfd75e179ffa3806193b5fb2b4e9717d08aa8536f5
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faacb13943a13434b9e912d084a2548a6c14ec813e0ef7d859ae03cad684bc87
3
+ size 45886
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -2,6 +2,6 @@
2
  - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
- - GPU Enabled: True
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
 
2
  - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5b535a34c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5b53599de0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674097648477840148, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArW+/PtWoxLzmyRA/rW+/PtWoxLzmyRA/rW+/PtWoxLzmyRA/rW+/PtWoxLzmyRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAbi3PkcPaD7M3Vi/GZxxvo8Dfr+1zDQ/u5ktPyQDej89MZm/E2oZvtxBjD/Mru6+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACtb78+1ajEvObJED8V+221BH+Qum7wEjytb78+1ajEvObJED8V+221BH+Qum7wEjytb78+1ajEvObJED8V+221BH+Qum7wEjytb78+1ajEvObJED8V+221BH+Qum7wEjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3738989 -0.02400629 0.5655807 ]\n [ 0.3738989 -0.02400629 0.5655807 ]\n [ 0.3738989 -0.02400629 0.5655807 ]\n [ 0.3738989 -0.02400629 0.5655807 ]]", "desired_goal": "[[ 0.3588257 0.22662078 -0.84713435]\n [-0.23594703 -0.9922418 0.7062486 ]\n [ 0.678127 0.9766104 -1.1968151 ]\n [-0.1498187 1.0957599 -0.46617734]]", "observation": "[[ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]\n [ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]\n [ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]\n [ 3.7389889e-01 -2.4006287e-02 5.6558073e-01 -8.8654753e-07\n -1.1024182e-03 8.9684557e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+47gvQsLAj3gNtc9fF2wPWHbRr3X8pA+rWCXPUPtcLtbeYc+Tu1YPQBjBL67Jx0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10964771 0.03174881 0.10508513]\n [ 0.08611581 -0.04854906 0.28310272]\n [ 0.07391486 -0.00367625 0.26459774]\n [ 0.05296069 -0.1292839 0.15347187]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbt3NUx1iFMCUhpRSlIwBbJRLMowBdJRHQKRjO3n6l+F1fZQoaAZoCWgPQwhgrG9gcuMGwJSGlFKUaBVLMmgWR0CkYwH4oJAudX2UKGgGaAloD0MIY0LMJVULEMCUhpRSlGgVSzJoFkdApGLGZiNKiHV9lChoBmgJaA9DCGR0QBL27QbAlIaUUpRoFUsyaBZHQKRijBzFMqV1fZQoaAZoCWgPQwgFNufgmTAJwJSGlFKUaBVLMmgWR0CkZCXfyf+TdX2UKGgGaAloD0MILJ56pMENF8CUhpRSlGgVSzJoFkdApGPsGxD9fnV9lChoBmgJaA9DCP3a+uk/SwbAlIaUUpRoFUsyaBZHQKRjsIUrTYx1fZQoaAZoCWgPQwgcB14td+YXwJSGlFKUaBVLMmgWR0CkY3XdTHbRdX2UKGgGaAloD0MISino9pJ2E8CUhpRSlGgVSzJoFkdApGURnxri2nV9lChoBmgJaA9DCO8fC9EhQBvAlIaUUpRoFUsyaBZHQKRk19AooeB1fZQoaAZoCWgPQwizQ/zDlh4HwJSGlFKUaBVLMmgWR0CkZJw1zhgmdX2UKGgGaAloD0MIwvwVMlcmFMCUhpRSlGgVSzJoFkdApGRhl+Vkc3V9lChoBmgJaA9DCB+DFadaaxLAlIaUUpRoFUsyaBZHQKRl9Hfdhy91fZQoaAZoCWgPQwgxsmSO5b0LwJSGlFKUaBVLMmgWR0CkZbq5TZQIdX2UKGgGaAloD0MIc5zbhHslB8CUhpRSlGgVSzJoFkdApGV/J3gUDnV9lChoBmgJaA9DCKsGYW73MhDAlIaUUpRoFUsyaBZHQKRlRH6Mzdl1fZQoaAZoCWgPQwhEiZY8ntYPwJSGlFKUaBVLMmgWR0CkZusajvd/dX2UKGgGaAloD0MIqRQ7Goe6AMCUhpRSlGgVSzJoFkdApGaxRXOnmHV9lChoBmgJaA9DCBlZMsfyzg3AlIaUUpRoFUsyaBZHQKRmdbB42TB1fZQoaAZoCWgPQwghlWJH40ATwJSGlFKUaBVLMmgWR0CkZjryUcGUdX2UKGgGaAloD0MI1EUKZeGrA8CUhpRSlGgVSzJoFkdApGfVyBClanV9lChoBmgJaA9DCKMgeHx7hxHAlIaUUpRoFUsyaBZHQKRnnFKkEcN1fZQoaAZoCWgPQwj0/j9OmOAYwJSGlFKUaBVLMmgWR0CkZ2DOLR8ddX2UKGgGaAloD0MIZRpNLsYgDsCUhpRSlGgVSzJoFkdApGcmGdqcmXV9lChoBmgJaA9DCEsFFVW/QhHAlIaUUpRoFUsyaBZHQKRoxltCRfZ1fZQoaAZoCWgPQwhSmWIOgu4TwJSGlFKUaBVLMmgWR0CkaIzY287IdX2UKGgGaAloD0MIDLJl+bqcE8CUhpRSlGgVSzJoFkdApGhRTbWVeXV9lChoBmgJaA9DCItrfCb7ZwjAlIaUUpRoFUsyaBZHQKRoFowmE5B1fZQoaAZoCWgPQwiy2ZHqO18SwJSGlFKUaBVLMmgWR0CkaaJy6tkndX2UKGgGaAloD0MIvhJIiV17EsCUhpRSlGgVSzJoFkdApGloskIHDHV9lChoBmgJaA9DCPfJUYAoGAvAlIaUUpRoFUsyaBZHQKRpLSgGr0d1fZQoaAZoCWgPQwjxftx++UQIwJSGlFKUaBVLMmgWR0CkaPJ1A7gbdX2UKGgGaAloD0MIcJf9utMtEMCUhpRSlGgVSzJoFkdApGqStvGZNXV9lChoBmgJaA9DCEXXhR+crxLAlIaUUpRoFUsyaBZHQKRqWPGyX2N1fZQoaAZoCWgPQwg/WMaGbhYNwJSGlFKUaBVLMmgWR0Ckah1kMCtBdX2UKGgGaAloD0MIJjYf14b6EsCUhpRSlGgVSzJoFkdApGni6UaAF3V9lChoBmgJaA9DCAHD8ufbwgXAlIaUUpRoFUsyaBZHQKRrhbUPQOZ1fZQoaAZoCWgPQwgTZARUOCIJwJSGlFKUaBVLMmgWR0Cka0wsoUi7dX2UKGgGaAloD0MIMC/APjq1HMCUhpRSlGgVSzJoFkdApGsQ8GLUC3V9lChoBmgJaA9DCMAg6dMqOhvAlIaUUpRoFUsyaBZHQKRq1mknCwd1fZQoaAZoCWgPQwgdrP9zmC8FwJSGlFKUaBVLMmgWR0CkbH9zfaYedX2UKGgGaAloD0MITpzc71C0BMCUhpRSlGgVSzJoFkdApGxFlCkXUHV9lChoBmgJaA9DCJIHIos0oRfAlIaUUpRoFUsyaBZHQKRsCvlEJBx1fZQoaAZoCWgPQwhwCFVq9qAOwJSGlFKUaBVLMmgWR0Cka9BOxjaxdX2UKGgGaAloD0MIPYIbKVtkCMCUhpRSlGgVSzJoFkdApG1xY/3WWnV9lChoBmgJaA9DCMx9chQgGhjAlIaUUpRoFUsyaBZHQKRtN49HMEB1fZQoaAZoCWgPQwh9y5wui+kFwJSGlFKUaBVLMmgWR0CkbPwgLZzxdX2UKGgGaAloD0MImGiQgqfwA8CUhpRSlGgVSzJoFkdApGzBcmjTKHV9lChoBmgJaA9DCEDc1avIKATAlIaUUpRoFUsyaBZHQKRuZ+qBErp1fZQoaAZoCWgPQwiFBfcDHrgFwJSGlFKUaBVLMmgWR0Ckbi6qCHymdX2UKGgGaAloD0MIUaT7OQUZCMCUhpRSlGgVSzJoFkdApG3zOJLuhXV9lChoBmgJaA9DCDoDIy9rogrAlIaUUpRoFUsyaBZHQKRtuH1OCXh1fZQoaAZoCWgPQwhtxmmIKlwNwJSGlFKUaBVLMmgWR0Ckb3Dxb0OFdX2UKGgGaAloD0MIKjv9oC7iF8CUhpRSlGgVSzJoFkdApG83V5KODXV9lChoBmgJaA9DCNcYdELowBXAlIaUUpRoFUsyaBZHQKRu/AuZkTZ1fZQoaAZoCWgPQwgi/fZ14BwOwJSGlFKUaBVLMmgWR0CkbsGoaUA1dX2UKGgGaAloD0MIQUXVr3Q+EcCUhpRSlGgVSzJoFkdApHB3OObRW3V9lChoBmgJaA9DCNk/TwMGSRvAlIaUUpRoFUsyaBZHQKRwPaq0dBB1fZQoaAZoCWgPQwi5cvbOaHsYwJSGlFKUaBVLMmgWR0CkcAN0FKTTdX2UKGgGaAloD0MIvTYbKzE/GMCUhpRSlGgVSzJoFkdApG/JGax5cHV9lChoBmgJaA9DCBhcc0f/mxDAlIaUUpRoFUsyaBZHQKRxf6xgRbt1fZQoaAZoCWgPQwhi3A2itaIJwJSGlFKUaBVLMmgWR0CkcUXb/Ot5dX2UKGgGaAloD0MI+I2vPbOUFcCUhpRSlGgVSzJoFkdApHEK9EkSmXV9lChoBmgJaA9DCAAapUv/IhTAlIaUUpRoFUsyaBZHQKRw0HxjJ+51fZQoaAZoCWgPQwjnj2ltGnsHwJSGlFKUaBVLMmgWR0Ckcmd9lVcVdX2UKGgGaAloD0MIvf4kPnciCsCUhpRSlGgVSzJoFkdApHItoFmnO3V9lChoBmgJaA9DCJYIVP8g8g7AlIaUUpRoFUsyaBZHQKRx8jpLVWl1fZQoaAZoCWgPQwiM22gAbwEXwJSGlFKUaBVLMmgWR0CkcbeotL+QdX2UKGgGaAloD0MIiPVGrTDdEsCUhpRSlGgVSzJoFkdApHNKpNsWPHV9lChoBmgJaA9DCDnyQGSRBgPAlIaUUpRoFUsyaBZHQKRzENipeeF1fZQoaAZoCWgPQwicGf1oOAUHwJSGlFKUaBVLMmgWR0CkctVmJ3xGdX2UKGgGaAloD0MIaVch5SflEcCUhpRSlGgVSzJoFkdApHKaqsEJSnV9lChoBmgJaA9DCLgCCvX0kRnAlIaUUpRoFUsyaBZHQKR0O05U96l1fZQoaAZoCWgPQwj2QCswZHURwJSGlFKUaBVLMmgWR0CkdAGATZg5dX2UKGgGaAloD0MIzJpY4Cv6CsCUhpRSlGgVSzJoFkdApHPF3hXKbXV9lChoBmgJaA9DCEwZOKClaxfAlIaUUpRoFUsyaBZHQKRzi0dilSF1fZQoaAZoCWgPQwgRGOsbmEwWwJSGlFKUaBVLMmgWR0CkdSkgntv5dX2UKGgGaAloD0MIUS6NX3hlC8CUhpRSlGgVSzJoFkdApHTvSx7iQ3V9lChoBmgJaA9DCGiz6nO1lQ3AlIaUUpRoFUsyaBZHQKR0s7dznzR1fZQoaAZoCWgPQwhagLbVrFMSwJSGlFKUaBVLMmgWR0CkdHkcCHRDdX2UKGgGaAloD0MImWa610m9EcCUhpRSlGgVSzJoFkdApHYlZowmFHV9lChoBmgJaA9DCN3SakjcAxfAlIaUUpRoFUsyaBZHQKR168qWkad1fZQoaAZoCWgPQwjwayQJwrUSwJSGlFKUaBVLMmgWR0CkdbCMHbAUdX2UKGgGaAloD0MItcAeEymNEcCUhpRSlGgVSzJoFkdApHV17D2rXHV9lChoBmgJaA9DCCvAd5s3fhHAlIaUUpRoFUsyaBZHQKR3Elk6Lfl1fZQoaAZoCWgPQwibApmdRW8JwJSGlFKUaBVLMmgWR0CkdtiGN70GdX2UKGgGaAloD0MId4U+WMYGDMCUhpRSlGgVSzJoFkdApHac7wKBunV9lChoBmgJaA9DCOrQ6Xk31hzAlIaUUpRoFUsyaBZHQKR2YinpB5Z1fZQoaAZoCWgPQwgJ3/sbtLcXwJSGlFKUaBVLMmgWR0CkeACvgWJrdX2UKGgGaAloD0MIfepYpfQMCcCUhpRSlGgVSzJoFkdApHfHHq/ucHV9lChoBmgJaA9DCAiUTbnC6xDAlIaUUpRoFUsyaBZHQKR3i9jgAIZ1fZQoaAZoCWgPQwgN5NnlW+chwJSGlFKUaBVLMmgWR0Ckd1FKCg9NdX2UKGgGaAloD0MIryE4LuOmDMCUhpRSlGgVSzJoFkdApHjpiobXH3V9lChoBmgJaA9DCI1+NJwyVwvAlIaUUpRoFUsyaBZHQKR4r69kBjp1fZQoaAZoCWgPQwjIBtLFptUHwJSGlFKUaBVLMmgWR0CkeHQVTJhfdX2UKGgGaAloD0MIgbG+gcmdH8CUhpRSlGgVSzJoFkdApHg5eC04R3V9lChoBmgJaA9DCFth+l5DYBDAlIaUUpRoFUsyaBZHQKR500Mw1zh1fZQoaAZoCWgPQwgLYwtBDuoKwJSGlFKUaBVLMmgWR0CkeZmNaQmvdX2UKGgGaAloD0MIKCfaVUiJEsCUhpRSlGgVSzJoFkdApHleD15B1XV9lChoBmgJaA9DCGDJVSx+kwTAlIaUUpRoFUsyaBZHQKR5I06YE4h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0dedbab670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0dedba7540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 580000, "_total_timesteps": 580000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674133256200898024, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhYfaPo+oAz1tRA8/hYfaPo+oAz1tRA8/hYfaPo+oAz1tRA8/hYfaPo+oAz1tRA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVp7FvxQEf7/Bg8i9uWQaPxDb9z6wKQ2/0tqNv7Xuhr8ZSwu/BuSUvacRFb6+vmo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuFh9o+j6gDPW1EDz+xV/u7quiGOu/4gbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42681518 0.03214317 0.55963784]\n [0.42681518 0.03214317 0.55963784]\n [0.42681518 0.03214317 0.55963784]\n [0.42681518 0.03214317 0.55963784]]", "desired_goal": "[[-1.5438945 -0.996156 -0.09790755]\n [ 0.6030994 0.4840932 -0.55141735]\n [-1.1082404 -1.0541598 -0.54411465]\n [-0.07270055 -0.14557515 0.05731081]]", "observation": "[[ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]\n [ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]\n [ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]\n [ 0.42681518 0.03214317 0.55963784 -0.00767037 0.00102927 -0.00396644]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz2qcvchbFb5joEc9Zds2PH7UED6RG4Q+OPDoPd92MjxAcHc+AKqgPM5AkT2Afx4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0763756 -0.14585793 0.04873694]\n [ 0.01116071 0.1414356 0.25802281]\n [ 0.11373943 0.0108926 0.24163914]\n [ 0.01961231 0.07092439 0.15478325]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqZ83Falw/r+UhpRSlIwBbJRLMowBdJRHQJqTxZbILgJ1fZQoaAZoCWgPQwinBMQkXGgAwJSGlFKUaBVLMmgWR0CakoYvWYnfdX2UKGgGaAloD0MIPKHXn8SHAsCUhpRSlGgVSzJoFkdAmpEXh4t6HHV9lChoBmgJaA9DCLsPQGoTp/m/lIaUUpRoFUsyaBZHQJqPoutfXwt1fZQoaAZoCWgPQwi/nq9ZLvsBwJSGlFKUaBVLMmgWR0CalfG2TgVHdX2UKGgGaAloD0MI226Cb5oeBMCUhpRSlGgVSzJoFkdAmpSy3G4qgHV9lChoBmgJaA9DCPay7bQ1Ag7AlIaUUpRoFUsyaBZHQJqTRDD0lJJ1fZQoaAZoCWgPQwgtliL5SqAAwJSGlFKUaBVLMmgWR0Cakc+QEIPcdX2UKGgGaAloD0MIAcPy59tC9r+UhpRSlGgVSzJoFkdAmpgbi++M63V9lChoBmgJaA9DCHjxftx++QPAlIaUUpRoFUsyaBZHQJqW3B1s+FF1fZQoaAZoCWgPQwhh/DTuzW/0v5SGlFKUaBVLMmgWR0CalW0b961LdX2UKGgGaAloD0MIILjKEwj7/b+UhpRSlGgVSzJoFkdAmpP4bGWD6HV9lChoBmgJaA9DCDdQ4J18uv6/lIaUUpRoFUsyaBZHQJqaSJEYwZh1fZQoaAZoCWgPQwgOhc/WwaEBwJSGlFKUaBVLMmgWR0CamQkwevIPdX2UKGgGaAloD0MIaqSl8nakBMCUhpRSlGgVSzJoFkdAmpeaOT7l73V9lChoBmgJaA9DCCUgJuFCngLAlIaUUpRoFUsyaBZHQJqWJYvFm4B1fZQoaAZoCWgPQwhvZ195kJ4DwJSGlFKUaBVLMmgWR0CanG1LJ0W/dX2UKGgGaAloD0MI1nPS+8b3C8CUhpRSlGgVSzJoFkdAmpst1p0wJ3V9lChoBmgJaA9DCOs3E9OFGP+/lIaUUpRoFUsyaBZHQJqZvsyBTXJ1fZQoaAZoCWgPQwi4PxcNGQ8QwJSGlFKUaBVLMmgWR0CamEpC8e0YdX2UKGgGaAloD0MIpdsSueAM+7+UhpRSlGgVSzJoFkdAmp63EZR8+nV9lChoBmgJaA9DCJP8iF+xRgTAlIaUUpRoFUsyaBZHQJqdeCxu89R1fZQoaAZoCWgPQwgwhJz3/9EKwJSGlFKUaBVLMmgWR0CanAkpZwGXdX2UKGgGaAloD0MI06HT827MAsCUhpRSlGgVSzJoFkdAmpqUdJaq0nV9lChoBmgJaA9DCKNzforjAAjAlIaUUpRoFUsyaBZHQJqg2cSXdCV1fZQoaAZoCWgPQwjkFB3J5R8CwJSGlFKUaBVLMmgWR0Can5pBomG/dX2UKGgGaAloD0MIQfM5d7u+AcCUhpRSlGgVSzJoFkdAmp4rdJrckHV9lChoBmgJaA9DCHszar5KPgLAlIaUUpRoFUsyaBZHQJqct1wHZ9N1fZQoaAZoCWgPQwgAjdKlf0kHwJSGlFKUaBVLMmgWR0Caoxtw71ZldX2UKGgGaAloD0MIbCbfbHPjAsCUhpRSlGgVSzJoFkdAmqHcAaNuL3V9lChoBmgJaA9DCEMaFTjZhvy/lIaUUpRoFUsyaBZHQJqgbP8hs691fZQoaAZoCWgPQwgouFhRg8kIwJSGlFKUaBVLMmgWR0CanvhIe5nUdX2UKGgGaAloD0MI0m70MR8wDsCUhpRSlGgVSzJoFkdAmqVCmygPE3V9lChoBmgJaA9DCF0XfnA+Nf+/lIaUUpRoFUsyaBZHQJqkAzFdcB51fZQoaAZoCWgPQwg7bvjddKsGwJSGlFKUaBVLMmgWR0CaopRLsa86dX2UKGgGaAloD0MItOcyNQn+CcCUhpRSlGgVSzJoFkdAmqEf+fh/AnV9lChoBmgJaA9DCF6DvvT25wfAlIaUUpRoFUsyaBZHQJqnmocaOxV1fZQoaAZoCWgPQwjBOo4fKk3+v5SGlFKUaBVLMmgWR0CaplsqJ/G3dX2UKGgGaAloD0MIb9kh/mErAMCUhpRSlGgVSzJoFkdAmqTsJpnHvXV9lChoBmgJaA9DCJ2bNuM0hP6/lIaUUpRoFUsyaBZHQJqjd5cC5mR1fZQoaAZoCWgPQwgEc/T4vW0FwJSGlFKUaBVLMmgWR0CaqakPMB6sdX2UKGgGaAloD0MILnB5rBlZ/b+UhpRSlGgVSzJoFkdAmqhp6yB063V9lChoBmgJaA9DCM5uLZPheAHAlIaUUpRoFUsyaBZHQJqm+ubI91V1fZQoaAZoCWgPQwidmzbjNMT8v5SGlFKUaBVLMmgWR0CapYYzi0fHdX2UKGgGaAloD0MIU5PgDWl0D8CUhpRSlGgVSzJoFkdAmqvkFr2xp3V9lChoBmgJaA9DCIOmJVZGYwTAlIaUUpRoFUsyaBZHQJqqpIf8uSR1fZQoaAZoCWgPQwhVvmckQkMKwJSGlFKUaBVLMmgWR0CaqTWLgn+idX2UKGgGaAloD0MIDmYTYFh+BcCUhpRSlGgVSzJoFkdAmqfBCY1HfHV9lChoBmgJaA9DCDBl4ICWbgTAlIaUUpRoFUsyaBZHQJqt7Rc/t6Z1fZQoaAZoCWgPQwhtOZfiqtIDwJSGlFKUaBVLMmgWR0CarK2SdOIqdX2UKGgGaAloD0MI/KcbKPCOAMCUhpRSlGgVSzJoFkdAmqs+ieumrXV9lChoBmgJaA9DCFsLs9DOyQXAlIaUUpRoFUsyaBZHQJqpynuRcNZ1fZQoaAZoCWgPQwjKqZ1haosBwJSGlFKUaBVLMmgWR0CasDCw8nuzdX2UKGgGaAloD0MIlBYuq7B5A8CUhpRSlGgVSzJoFkdAmq7yn+AEuHV9lChoBmgJaA9DCOkPzTy5JgzAlIaUUpRoFUsyaBZHQJqtg9Net0V1fZQoaAZoCWgPQwg6WP/nMF8IwJSGlFKUaBVLMmgWR0CarA8a4tpVdX2UKGgGaAloD0MIGa95VWfVCsCUhpRSlGgVSzJoFkdAmrJV5GBnSXV9lChoBmgJaA9DCCandoapLQPAlIaUUpRoFUsyaBZHQJqxFm8M/hV1fZQoaAZoCWgPQwhUq6+uCpQEwJSGlFKUaBVLMmgWR0Car6dszl90dX2UKGgGaAloD0MIenB31m67AcCUhpRSlGgVSzJoFkdAmq4zB68g6nV9lChoBmgJaA9DCFeUEoJVdQLAlIaUUpRoFUsyaBZHQJq0rAbhm5F1fZQoaAZoCWgPQwheoKTAArgCwJSGlFKUaBVLMmgWR0Cas22S+xnndX2UKGgGaAloD0MILoz0onY/AMCUhpRSlGgVSzJoFkdAmrH+pXIU8HV9lChoBmgJaA9DCGPshJfgFAjAlIaUUpRoFUsyaBZHQJqwimbb1yx1fZQoaAZoCWgPQwhJ88e0Ns0PwJSGlFKUaBVLMmgWR0CatuaXa8HwdX2UKGgGaAloD0MIlkBK7NqeCsCUhpRSlGgVSzJoFkdAmrWnWJ79h3V9lChoBmgJaA9DCE0xB0FHSwnAlIaUUpRoFUsyaBZHQJq0OGi5/b11fZQoaAZoCWgPQwgFwePbu8YFwJSGlFKUaBVLMmgWR0CassQbdadMdX2UKGgGaAloD0MIT8sPXOWpCcCUhpRSlGgVSzJoFkdAmrjLLIPsiXV9lChoBmgJaA9DCLE08KMaFgjAlIaUUpRoFUsyaBZHQJq3i6BiCrd1fZQoaAZoCWgPQwjcZirEIxEHwJSGlFKUaBVLMmgWR0Cathx+8XendX2UKGgGaAloD0MIP3PWpxxTBsCUhpRSlGgVSzJoFkdAmrSoP5HmR3V9lChoBmgJaA9DCB8RUyKJ/gPAlIaUUpRoFUsyaBZHQJq6rCVKPGR1fZQoaAZoCWgPQwjgaMcNv/sEwJSGlFKUaBVLMmgWR0CauWyLAHmjdX2UKGgGaAloD0MIgJnv4CdOBsCUhpRSlGgVSzJoFkdAmrf9dRiw0XV9lChoBmgJaA9DCI8X0uEhTPu/lIaUUpRoFUsyaBZHQJq2iKuSwGJ1fZQoaAZoCWgPQwhZpl8i3jr9v5SGlFKUaBVLMmgWR0CavLobn5i3dX2UKGgGaAloD0MIGVbxRuYRAMCUhpRSlGgVSzJoFkdAmrt6xxDLKXV9lChoBmgJaA9DCMLaGDvhRQHAlIaUUpRoFUsyaBZHQJq6C+RHPNV1fZQoaAZoCWgPQwhT7Ggc6pcAwJSGlFKUaBVLMmgWR0CauJdYnv2HdX2UKGgGaAloD0MIM1LvqZz2B8CUhpRSlGgVSzJoFkdAmr6vWDpTuXV9lChoBmgJaA9DCIrNx7WhQgbAlIaUUpRoFUsyaBZHQJq9cDEFW4p1fZQoaAZoCWgPQwiS5o9pbZoKwJSGlFKUaBVLMmgWR0CavAEkjX4CdX2UKGgGaAloD0MIlfJaCd0FBsCUhpRSlGgVSzJoFkdAmrqMY2sJY3V9lChoBmgJaA9DCE4LXvQVRAbAlIaUUpRoFUsyaBZHQJrAko7V8Tl1fZQoaAZoCWgPQwjXbVD7rT0DwJSGlFKUaBVLMmgWR0Cav1L9uP3jdX2UKGgGaAloD0MIinQ/pyB//7+UhpRSlGgVSzJoFkdAmr3j5TIeYHV9lChoBmgJaA9DCLDKhcq/lvq/lIaUUpRoFUsyaBZHQJq8byz5XU91fZQoaAZoCWgPQwiR8/4/Tlj/v5SGlFKUaBVLMmgWR0CawnpnHvMKdX2UKGgGaAloD0MIqg65GW5ABsCUhpRSlGgVSzJoFkdAmsE7sv7FbXV9lChoBmgJaA9DCEZ9kjtsYv2/lIaUUpRoFUsyaBZHQJq/zKgZjx11fZQoaAZoCWgPQwgyOEpeneP+v5SGlFKUaBVLMmgWR0Cavlfk3juKdX2UKGgGaAloD0MIkj8YeO79/b+UhpRSlGgVSzJoFkdAmsSP7vXsgXV9lChoBmgJaA9DCHV4COOnkQnAlIaUUpRoFUsyaBZHQJrDUImgJ1J1fZQoaAZoCWgPQwgK98q8VZcAwJSGlFKUaBVLMmgWR0CaweHmRvFWdX2UKGgGaAloD0MIc2iR7XxfA8CUhpRSlGgVSzJoFkdAmsBtWdVebHV9lChoBmgJaA9DCEuQEVDhqAPAlIaUUpRoFUsyaBZHQJrGu5UcXFd1fZQoaAZoCWgPQwhvRs1XyQcBwJSGlFKUaBVLMmgWR0CaxXzRQaaTdX2UKGgGaAloD0MI5+Jve4IkCsCUhpRSlGgVSzJoFkdAmsQOUt7KJXV9lChoBmgJaA9DCOVDUDV69QHAlIaUUpRoFUsyaBZHQJrCmdK/VRV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 29000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.5829655857756735, "std_reward": 0.8652689992987153, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T03:52:00.202321"}
 
1
+ {"mean_reward": -2.5746143211610617, "std_reward": 0.5569455285372881, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T13:42:28.491276"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d9178b42387f0b14f9c40021c675c3c20f15c8e8cb492476572249a4a55c0d41
3
  size 3212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5834b482b54c60271d8aa3ffa6bc72b74c03791fda17ccb977937e54ef460794
3
  size 3212