Merge branch 'main' of hf.co:pdufour/Qwen2-VL-2B-Instruct-ONNX-Q4-F16
Browse files
EXPORT.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Export
|
2 |
+
|
3 |
+
The original model was exported using the following process:
|
4 |
+
|
5 |
+
The following repos were used:
|
6 |
+
* https://github.com/pdufour/Native-LLM-for-Android
|
7 |
+
* https://github.com/pdufour/transformers.js/tree/add-block-list
|
8 |
+
|
9 |
+
If you close this repo and the above 2 to the same directory you can run the following commands:
|
10 |
+
|
11 |
+
**From `Qwen2-VL-2B-Instruct-ONNX-Q4-F16`, run:**
|
12 |
+
|
13 |
+
`make all-in-one`
|
14 |
+
|
15 |
+
This will create an export of the onnx models.
|
16 |
+
|
17 |
+
**The following is a list of all commands available:**
|
18 |
+
|
19 |
+
**all-in-one**
|
20 |
+
|
21 |
+
Runs all steps (exporting, slimming, quantizing, cleaning, fixing GPU buffers) to produce fully prepared ONNX models.
|
22 |
+
|
23 |
+
**export**
|
24 |
+
|
25 |
+
Combines export-abcd and export-e to generate ONNX models for all parts.
|
26 |
+
|
27 |
+
**export-abcd**
|
28 |
+
|
29 |
+
Exports model parts A, B, C, and D by running QwenVL_Export_ABCD.py.
|
30 |
+
|
31 |
+
**export-e**
|
32 |
+
|
33 |
+
Exports model part E by running QwenVL_Export_E.py.
|
34 |
+
|
35 |
+
**slim**
|
36 |
+
|
37 |
+
Reduces ONNX model size by removing unnecessary elements for optimized deployment.
|
38 |
+
|
39 |
+
**quantize**
|
40 |
+
|
41 |
+
Quantizes all model parts (A, B, C, D, and E) to optimize size and performance.
|
42 |
+
|
43 |
+
**quantize-%**
|
44 |
+
|
45 |
+
Quantizes a specific model part (% can be A, B, C, D, or E) with targeted configurations.
|
46 |
+
|
47 |
+
**clean-large-files**
|
48 |
+
|
49 |
+
Deletes ONNX files larger than 2GB from the destination directory to retain models that will work for onnx environments.
|
50 |
+
|
51 |
+
**fix-gpu-buffers**
|
52 |
+
|
53 |
+
Applies fixes to GPU buffers in ONNX files for part E to ensure GPU memory compatibility.
|
54 |
+
|
55 |
+
**all**
|
56 |
+
|
57 |
+
Alias for all-in-one to run the full ONNX model preparation pipeline.
|
README.md
CHANGED
@@ -2,4 +2,145 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model:
|
4 |
- Qwen/Qwen2-VL-2B-Instruct
|
5 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
base_model:
|
4 |
- Qwen/Qwen2-VL-2B-Instruct
|
5 |
+
---
|
6 |
+
# Requirements
|
7 |
+
This is compatible with any onnx runtime.
|
8 |
+
|
9 |
+
# Running this model
|
10 |
+
|
11 |
+
**Javascript**
|
12 |
+
|
13 |
+
See https://huggingface.co/spaces/pdufour/Qwen2-VL-2B-Instruct-ONNX-Q4-F16 for a demo.
|
14 |
+
|
15 |
+
|
16 |
+
**Python**
|
17 |
+
|
18 |
+
Download the following script ./infer.py and then run like so:
|
19 |
+
python3 infer.py Qwen/Qwen2-VL-2B-Instruct 'path-to/Qwen2-VL-2B-Instruct-onnx/onnx'
|
20 |
+
|
21 |
+
```
|
22 |
+
import os
|
23 |
+
import sys
|
24 |
+
import time
|
25 |
+
import torch
|
26 |
+
import numpy as np
|
27 |
+
import requests
|
28 |
+
import onnxruntime as ort
|
29 |
+
from PIL import Image
|
30 |
+
from io import BytesIO
|
31 |
+
from transformers import Qwen2VLConfig, AutoTokenizer
|
32 |
+
|
33 |
+
# Command line arguments
|
34 |
+
model_path = sys.argv[1]
|
35 |
+
onnx_path = sys.argv[2]
|
36 |
+
|
37 |
+
# Initialize model config and tokenizer
|
38 |
+
model_config = Qwen2VLConfig.from_pretrained(model_path)
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
40 |
+
|
41 |
+
# Model configuration
|
42 |
+
max_length = 1024
|
43 |
+
num_attention_heads = model_config.num_attention_heads
|
44 |
+
num_key_value_heads = model_config.num_key_value_heads
|
45 |
+
head_dim = model_config.hidden_size // num_attention_heads
|
46 |
+
num_layers = model_config.num_hidden_layers
|
47 |
+
|
48 |
+
# Setup ONNX sessions
|
49 |
+
session_options = ort.SessionOptions()
|
50 |
+
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
51 |
+
|
52 |
+
# Model paths and sessions
|
53 |
+
models = ['A', 'B', 'C', 'D', 'E']
|
54 |
+
model_paths = {m: os.path.join(onnx_path, f'QwenVL_{m}_q4f16.onnx') for m in models}
|
55 |
+
sessions = {m: ort.InferenceSession(path, sess_options=session_options) for m, path in model_paths.items()}
|
56 |
+
|
57 |
+
# Input/output names
|
58 |
+
inputs = {
|
59 |
+
'A': sessions['A'].get_inputs()[0].name,
|
60 |
+
'B': [sessions['B'].get_inputs()[i].name for i in range(2)],
|
61 |
+
'C': sessions['C'].get_inputs()[0].name,
|
62 |
+
'D': [inp.name for inp in sessions['D'].get_inputs()],
|
63 |
+
'E': [inp.name for inp in sessions['E'].get_inputs()]
|
64 |
+
}
|
65 |
+
|
66 |
+
outputs = {
|
67 |
+
'A': sessions['A'].get_outputs()[0].name,
|
68 |
+
'B': sessions['B'].get_outputs()[0].name,
|
69 |
+
'C': sessions['C'].get_outputs()[0].name,
|
70 |
+
'D': [out.name for out in sessions['D'].get_outputs()],
|
71 |
+
'E': [out.name for out in sessions['E'].get_outputs()]
|
72 |
+
}
|
73 |
+
|
74 |
+
# Process image
|
75 |
+
image_url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg'
|
76 |
+
image = Image.open(BytesIO(requests.get(image_url).content)).resize((960, 960)).convert('RGB')
|
77 |
+
image_array = np.expand_dims(np.transpose(np.array(image).astype(np.float32), (2, 0, 1)), axis=0) / 255.
|
78 |
+
|
79 |
+
# Prepare inputs
|
80 |
+
prompt = "Describe this image."
|
81 |
+
formatted_prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
82 |
+
input_ids = tokenizer(formatted_prompt, return_tensors='pt')['input_ids']
|
83 |
+
input_lengths = np.array([input_ids.shape[1]], dtype=np.int64)
|
84 |
+
tokens = np.zeros(max_length, dtype=np.int32)
|
85 |
+
tokens[:input_ids.shape[1]] = input_ids[0, :]
|
86 |
+
position = np.zeros(1, dtype=np.int64)
|
87 |
+
|
88 |
+
# Initialize caches
|
89 |
+
key_cache = np.zeros((num_layers, num_key_value_heads, max_length, head_dim), dtype=np.float16)
|
90 |
+
value_cache = key_cache.copy()
|
91 |
+
|
92 |
+
# Process initial inputs
|
93 |
+
hidden_states = sessions['B'].run(
|
94 |
+
[outputs['B']],
|
95 |
+
{inputs['B'][0]: tokens, inputs['B'][1]: input_lengths}
|
96 |
+
)[0]
|
97 |
+
|
98 |
+
batch_size = np.array(0, dtype=np.int32)
|
99 |
+
batch_size, = sessions['C'].run([outputs['C']], {inputs['C']: batch_size})
|
100 |
+
|
101 |
+
# Process image features
|
102 |
+
image_features = sessions['A'].run([outputs['A']], {inputs['A']: image_array})[0]
|
103 |
+
total_ids = 100 # 10 * 10 from original factors
|
104 |
+
input_lengths += total_ids
|
105 |
+
remaining_tokens = np.array(max_length - input_lengths[0] - total_ids, dtype=np.int32)
|
106 |
+
tokens_to_stop = np.array(input_lengths[0] - 5, dtype=np.int32)
|
107 |
+
|
108 |
+
hidden_states, batch_size = sessions['D'].run(
|
109 |
+
outputs['D'],
|
110 |
+
dict(zip(inputs['D'],
|
111 |
+
[hidden_states, image_features, input_lengths, tokens_to_stop, remaining_tokens]))
|
112 |
+
)
|
113 |
+
|
114 |
+
# Generate tokens
|
115 |
+
start_time = time.time()
|
116 |
+
for i in range(12): # MAX_ITERATIONS
|
117 |
+
token, key_cache, value_cache = sessions['E'].run(
|
118 |
+
outputs['E'],
|
119 |
+
dict(zip(inputs['E'],
|
120 |
+
[hidden_states, np.array([-65504. if i==0 else 0.], dtype=np.float16),
|
121 |
+
key_cache, value_cache, position, input_lengths, batch_size,
|
122 |
+
np.array([1-total_ids+10 if i==0 else position[0]+1], dtype=np.float16)]))
|
123 |
+
)
|
124 |
+
|
125 |
+
if token in [151643, 151645]: # End tokens
|
126 |
+
break
|
127 |
+
|
128 |
+
if i < 1:
|
129 |
+
position += input_lengths[0]
|
130 |
+
input_lengths[0] = 1
|
131 |
+
else:
|
132 |
+
position += 1
|
133 |
+
|
134 |
+
tokens[0] = token
|
135 |
+
hidden_states = sessions['B'].run(
|
136 |
+
[outputs['B']],
|
137 |
+
{inputs['B'][0]: tokens, inputs['B'][1]: input_lengths}
|
138 |
+
)[0]
|
139 |
+
print(tokenizer.decode(token), end='', flush=True)
|
140 |
+
|
141 |
+
print(f"\nTotal time: {time.time() - start_time:.2f}s")
|
142 |
+
|
143 |
+
```
|
144 |
+
|
145 |
+
# Technical Information:
|
146 |
+
- [EXPORT.md](EXPORT.md)
|