--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/pcuenq/pokemon-lora These are LoRA adaption weights trained on base model https://huggingface.co/runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. ## How to Use The script below loads the base model, then applies the LoRA weights and performs inference: ```Python import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from huggingface_hub import model_info # LoRA weights ~3 MB model_path = "pcuenq/pokemon-lora" info = model_info(model_path) model_base = info.cardData["base_model"] pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.unet.load_attn_procs(model_path) pipe.to("cuda") image = pipe("Green pokemon with menacing face", num_inference_steps=25).images[0] image.save("green_pokemon.png") ``` Please, check [our blog post](https://huggingface.co/blog/lora) or [documentation](https://huggingface.co/docs/diffusers/v0.15.0/en/training/lora#text-to-image-inference) for more details. ## Example Images ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)