Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +16 -0
- chat_template.json +3 -0
- config.json +47 -0
- generation_config.json +11 -0
- global_step33/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step33/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step33/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step33/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step33/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step33/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step33/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step33/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step33/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step33/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step33/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step33/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step33/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step33/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step33/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- global_step33/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +737 -0
- preprocessor_config.json +19 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- sft_args.json +302 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +144 -0
- trainer_state.json +122 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/patrickbarker/.cache/huggingface/hub/models--Qwen--Qwen2-VL-7B-Instruct/snapshots/a7a06a1cc11b4514ce9edcde0e3ca1d16e5ff2fc",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2VLForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"image_token_id": 151655,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 18944,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen2_vl",
|
17 |
+
"num_attention_heads": 28,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 4,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": {
|
22 |
+
"mrope_section": [
|
23 |
+
16,
|
24 |
+
24,
|
25 |
+
24
|
26 |
+
],
|
27 |
+
"rope_type": "default",
|
28 |
+
"type": "default"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": 32768,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.47.0",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"video_token_id": 151656,
|
38 |
+
"vision_config": {
|
39 |
+
"in_chans": 3,
|
40 |
+
"model_type": "qwen2_vl",
|
41 |
+
"spatial_patch_size": 14
|
42 |
+
},
|
43 |
+
"vision_end_token_id": 151653,
|
44 |
+
"vision_start_token_id": 151652,
|
45 |
+
"vision_token_id": 151654,
|
46 |
+
"vocab_size": 152064
|
47 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"pad_token_id": 151643,
|
7 |
+
"temperature": 0.01,
|
8 |
+
"top_k": 1,
|
9 |
+
"top_p": 0.001,
|
10 |
+
"transformers_version": "4.47.0"
|
11 |
+
}
|
global_step33/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:223ea43bc02f2d1280baba70d62a27cb2e8a8e14e017303437857ca7541df3ac
|
3 |
+
size 12437067324
|
global_step33/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eac5c6557aa6e1f8cc21561bcb062e8d012dcc13e27745daef5d918ff23bc6cb
|
3 |
+
size 12437067324
|
global_step33/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b185187fa74a2381dca9411865b24ec3ffcdf5e2c92937b26c8bc474412e1e98
|
3 |
+
size 12437067324
|
global_step33/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:113baf22a505abb9a91d8d6398f3ac6e0735669d3e09ea67c38ed6e9f9471563
|
3 |
+
size 12437067324
|
global_step33/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e19fba84e68b1c1150677b13cfcd4f2cc4172c4bed1a8521ff2e15efc0fbeef8
|
3 |
+
size 12437067324
|
global_step33/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02104d884c55fe080686a2b6df15ef76cbcdd93423dddfe57e2b714e0d32ab6f
|
3 |
+
size 12437067324
|
global_step33/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d4cfe2ce55605657ab2b8e06fc6330af25d2e7613a118da518cc5727fdeec3c
|
3 |
+
size 12437067324
|
global_step33/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:305a7614b0ff03e93a513b4cb03874da776a79c45d7eb029c6d2aaf32b87922e
|
3 |
+
size 12437067324
|
global_step33/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48eb82529c00bab6fd772944684b39ba5ce910d96d8991629afdcf57540beb57
|
3 |
+
size 345376
|
global_step33/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac356ce8d0770d4d561045a1a4712de9c47845fb6aa5eb8ac7fe576bf57d90ba
|
3 |
+
size 345376
|
global_step33/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29f90099c53e41b88fa6d13a2e27b7617756b819c7d20413ed1bcf23513f04fa
|
3 |
+
size 345376
|
global_step33/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a2ab44c239292c9a259cf06dd65207cee714d2a9e280b942eb71287300084fb
|
3 |
+
size 345376
|
global_step33/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52a43e18fee9e887088255edf661c055ff51ac03545f2508a361cf884793f45e
|
3 |
+
size 345376
|
global_step33/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a993d7845b146be350accadde3492dace269c5535dc27123015627284ba5a0a5
|
3 |
+
size 345376
|
global_step33/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57d73b9d308c652a0012982fcdd0eb336e9d9de83be2293ff9adabf249cc3628
|
3 |
+
size 345376
|
global_step33/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f507771a751a02e27103830db1ae9c371bc67c200ff72f131c019aaa7ae909a0
|
3 |
+
size 345376
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step33
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be42e6d04885a1a08f9321a36b915079a45e79f0a2799b1415b1c3ebc8ce1a34
|
3 |
+
size 4966659944
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dd9bb4321471dd963870e269b329f563da6267542fc0b1a74b76175c97ed86f
|
3 |
+
size 4991495816
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5da4322bdc7464762aca3632b7285898e321408a15ae50bb0709f0a52dfbf3fb
|
3 |
+
size 4932751040
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e48e6d6b1f70ebd501be31690080a3182f4f425182e4a9b4b453b148cecc015
|
3 |
+
size 1691924384
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16582751232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
346 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
348 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
350 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
352 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
354 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
356 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
358 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
360 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
364 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
366 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
368 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
370 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
372 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
376 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
378 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
379 |
+
"visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
380 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
382 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
384 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
392 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
394 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
396 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
406 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
408 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
412 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
414 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
420 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
434 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
448 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
449 |
+
"visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
462 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
468 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
476 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
477 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
490 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
491 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
492 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
504 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
505 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
516 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
518 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
519 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
528 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
532 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
533 |
+
"visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
540 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
546 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
547 |
+
"visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
552 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
|
560 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
564 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
574 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
575 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
576 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
588 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
589 |
+
"visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
600 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
602 |
+
"visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
603 |
+
"visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
612 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
616 |
+
"visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
617 |
+
"visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
624 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
630 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
631 |
+
"visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
636 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
640 |
+
"visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
641 |
+
"visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
|
642 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
|
643 |
+
"visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
|
644 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
|
645 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
|
646 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
648 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
649 |
+
"visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
660 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
672 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
684 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
694 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
695 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
696 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
697 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
698 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
704 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
705 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
706 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
708 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
710 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
712 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
713 |
+
"visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
714 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
715 |
+
"visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
716 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
717 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
718 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
720 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
721 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
722 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
723 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
724 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
726 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
728 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
729 |
+
"visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
|
730 |
+
"visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
|
731 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
|
732 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
|
733 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
|
734 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
|
735 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
|
736 |
+
}
|
737 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"min_pixels": 3136,
|
3 |
+
"max_pixels": 12845056,
|
4 |
+
"patch_size": 14,
|
5 |
+
"temporal_patch_size": 2,
|
6 |
+
"merge_size": 2,
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
18 |
+
"processor_class": "Qwen2VLProcessor"
|
19 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da661aad2e9ab98676885cda2d296e7d5781572d0062fef9c91ad25c971522e1
|
3 |
+
size 15920
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76066b4424ebb894fbf93616ab2e9648b9b421dcd3b26e99900e877a4b1aef69
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1573cf092a799f5b9d7a1ea62ab9b1b58065859e3ab6d98cc28dc4083afdcfdd
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbf4bea5d1ec717842d4dc103e72d1adb2a2b31afc91aefe38bcfcba578f77c6
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d885754fb7b8ce47bda620803ac75712487e2c508ad1b8100c7f9d38da7c661
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6862d26c10da6510d3a0336dac2f26b1e85421b284a42237463e13cc78ef3df1
|
3 |
+
size 16048
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c6b9cfcbe810c109da95d448566518364e3ee79c9bb31a904613d5a69c8b367
|
3 |
+
size 15920
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f52b3be52613e7b518e640203ac12f79eb7f2fdfae165af3bb755b5db080c178
|
3 |
+
size 15920
|
sft_args.json
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "qwen2-vl-7b-instruct",
|
3 |
+
"model_id_or_path": "Qwen/Qwen2-VL-7B-Instruct",
|
4 |
+
"model_revision": "main",
|
5 |
+
"full_determinism": false,
|
6 |
+
"sft_type": "full",
|
7 |
+
"freeze_parameters": [],
|
8 |
+
"freeze_vit": false,
|
9 |
+
"freeze_parameters_ratio": 0.0,
|
10 |
+
"additional_trainable_parameters": [],
|
11 |
+
"tuner_backend": "peft",
|
12 |
+
"template_type": "qwen2-vl",
|
13 |
+
"output_dir": "/home/patrickbarker/output/qwen2-vl-7b-instruct/v4-20241227-193713",
|
14 |
+
"add_output_dir_suffix": true,
|
15 |
+
"ddp_backend": "nccl",
|
16 |
+
"ddp_find_unused_parameters": null,
|
17 |
+
"ddp_broadcast_buffers": null,
|
18 |
+
"ddp_timeout": 1800,
|
19 |
+
"seed": 42,
|
20 |
+
"resume_from_checkpoint": null,
|
21 |
+
"resume_only_model": false,
|
22 |
+
"ignore_data_skip": false,
|
23 |
+
"dtype": "bf16",
|
24 |
+
"packing": false,
|
25 |
+
"train_backend": "transformers",
|
26 |
+
"tp": 1,
|
27 |
+
"pp": 1,
|
28 |
+
"min_lr": null,
|
29 |
+
"sequence_parallel": false,
|
30 |
+
"model_kwargs": {},
|
31 |
+
"loss_name": null,
|
32 |
+
"dataset": [
|
33 |
+
"/home/patrickbarker/train.jsonl"
|
34 |
+
],
|
35 |
+
"val_dataset": [
|
36 |
+
"/home/patrickbarker/val.jsonl"
|
37 |
+
],
|
38 |
+
"dataset_seed": 42,
|
39 |
+
"dataset_test_ratio": 0.0,
|
40 |
+
"use_loss_scale": false,
|
41 |
+
"loss_scale_config_path": "/home/patrickbarker/miniconda3/lib/python3.12/site-packages/swift/llm/agent/default_loss_scale_config.json",
|
42 |
+
"system": null,
|
43 |
+
"tools_prompt": "react_en",
|
44 |
+
"max_length": 8192,
|
45 |
+
"truncation_strategy": "delete",
|
46 |
+
"check_dataset_strategy": "none",
|
47 |
+
"streaming": false,
|
48 |
+
"streaming_val_size": 0,
|
49 |
+
"streaming_buffer_size": 16384,
|
50 |
+
"model_name": [
|
51 |
+
null,
|
52 |
+
null
|
53 |
+
],
|
54 |
+
"model_author": [
|
55 |
+
null,
|
56 |
+
null
|
57 |
+
],
|
58 |
+
"quant_method": null,
|
59 |
+
"quantization_bit": 0,
|
60 |
+
"hqq_axis": 0,
|
61 |
+
"hqq_dynamic_config_path": null,
|
62 |
+
"bnb_4bit_comp_dtype": "bf16",
|
63 |
+
"bnb_4bit_quant_type": "nf4",
|
64 |
+
"bnb_4bit_use_double_quant": true,
|
65 |
+
"bnb_4bit_quant_storage": null,
|
66 |
+
"rescale_image": -1,
|
67 |
+
"target_modules": "^(model)(?!.*(lm_head|output|emb|wte|shared)).*",
|
68 |
+
"target_regex": null,
|
69 |
+
"modules_to_save": [],
|
70 |
+
"lora_rank": 8,
|
71 |
+
"lora_alpha": 32,
|
72 |
+
"lora_dropout": 0.05,
|
73 |
+
"lora_bias_trainable": "none",
|
74 |
+
"lora_dtype": "AUTO",
|
75 |
+
"lora_lr_ratio": null,
|
76 |
+
"use_rslora": false,
|
77 |
+
"use_dora": false,
|
78 |
+
"init_lora_weights": "true",
|
79 |
+
"fourier_n_frequency": 2000,
|
80 |
+
"fourier_scaling": 300.0,
|
81 |
+
"rope_scaling": null,
|
82 |
+
"boft_block_size": 4,
|
83 |
+
"boft_block_num": 0,
|
84 |
+
"boft_n_butterfly_factor": 1,
|
85 |
+
"boft_dropout": 0.0,
|
86 |
+
"vera_rank": 256,
|
87 |
+
"vera_projection_prng_key": 0,
|
88 |
+
"vera_dropout": 0.0,
|
89 |
+
"vera_d_initial": 0.1,
|
90 |
+
"adapter_act": "gelu",
|
91 |
+
"adapter_length": 128,
|
92 |
+
"use_galore": false,
|
93 |
+
"galore_target_modules": null,
|
94 |
+
"galore_rank": 128,
|
95 |
+
"galore_update_proj_gap": 50,
|
96 |
+
"galore_scale": 1.0,
|
97 |
+
"galore_proj_type": "std",
|
98 |
+
"galore_optim_per_parameter": false,
|
99 |
+
"galore_with_embedding": false,
|
100 |
+
"galore_quantization": false,
|
101 |
+
"galore_proj_quant": false,
|
102 |
+
"galore_proj_bits": 4,
|
103 |
+
"galore_proj_group_size": 256,
|
104 |
+
"galore_cos_threshold": 0.4,
|
105 |
+
"galore_gamma_proj": 2,
|
106 |
+
"galore_queue_size": 5,
|
107 |
+
"adalora_target_r": 8,
|
108 |
+
"adalora_init_r": 12,
|
109 |
+
"adalora_tinit": 0,
|
110 |
+
"adalora_tfinal": 0,
|
111 |
+
"adalora_deltaT": 1,
|
112 |
+
"adalora_beta1": 0.85,
|
113 |
+
"adalora_beta2": 0.85,
|
114 |
+
"adalora_orth_reg_weight": 0.5,
|
115 |
+
"ia3_feedforward_modules": [],
|
116 |
+
"llamapro_num_new_blocks": 4,
|
117 |
+
"llamapro_num_groups": null,
|
118 |
+
"neftune_noise_alpha": null,
|
119 |
+
"neftune_backend": "transformers",
|
120 |
+
"lisa_activated_layers": 0,
|
121 |
+
"lisa_step_interval": 20,
|
122 |
+
"reft_layer_key": null,
|
123 |
+
"reft_layers": null,
|
124 |
+
"reft_rank": 4,
|
125 |
+
"reft_intervention_type": "LoreftIntervention",
|
126 |
+
"reft_args": null,
|
127 |
+
"use_liger": false,
|
128 |
+
"gradient_checkpointing": true,
|
129 |
+
"vit_use_gc": true,
|
130 |
+
"deepspeed": {
|
131 |
+
"fp16": {
|
132 |
+
"enabled": "auto",
|
133 |
+
"loss_scale": 0,
|
134 |
+
"loss_scale_window": 1000,
|
135 |
+
"initial_scale_power": 16,
|
136 |
+
"hysteresis": 2,
|
137 |
+
"min_loss_scale": 1
|
138 |
+
},
|
139 |
+
"bf16": {
|
140 |
+
"enabled": "auto"
|
141 |
+
},
|
142 |
+
"optimizer": {
|
143 |
+
"type": "AdamW",
|
144 |
+
"params": {
|
145 |
+
"lr": "auto",
|
146 |
+
"betas": "auto",
|
147 |
+
"eps": "auto",
|
148 |
+
"weight_decay": "auto"
|
149 |
+
}
|
150 |
+
},
|
151 |
+
"scheduler": {
|
152 |
+
"type": "WarmupCosineLR",
|
153 |
+
"params": {
|
154 |
+
"total_num_steps": "auto",
|
155 |
+
"warmup_num_steps": "auto"
|
156 |
+
}
|
157 |
+
},
|
158 |
+
"zero_optimization": {
|
159 |
+
"stage": 3,
|
160 |
+
"offload_optimizer": {
|
161 |
+
"device": "none",
|
162 |
+
"pin_memory": true
|
163 |
+
},
|
164 |
+
"offload_param": {
|
165 |
+
"device": "none",
|
166 |
+
"pin_memory": true
|
167 |
+
},
|
168 |
+
"overlap_comm": true,
|
169 |
+
"contiguous_gradients": true,
|
170 |
+
"sub_group_size": 1000000000.0,
|
171 |
+
"reduce_bucket_size": "auto",
|
172 |
+
"stage3_prefetch_bucket_size": "auto",
|
173 |
+
"stage3_param_persistence_threshold": "auto",
|
174 |
+
"stage3_max_live_parameters": 1000000000.0,
|
175 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
176 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
177 |
+
},
|
178 |
+
"gradient_accumulation_steps": "auto",
|
179 |
+
"gradient_clipping": "auto",
|
180 |
+
"steps_per_print": 2000,
|
181 |
+
"train_batch_size": "auto",
|
182 |
+
"train_micro_batch_size_per_gpu": "auto",
|
183 |
+
"wall_clock_breakdown": false
|
184 |
+
},
|
185 |
+
"batch_size": 1,
|
186 |
+
"eval_batch_size": 1,
|
187 |
+
"auto_find_batch_size": false,
|
188 |
+
"num_train_epochs": 5,
|
189 |
+
"max_steps": -1,
|
190 |
+
"optim": "adamw_torch",
|
191 |
+
"adam_beta1": 0.9,
|
192 |
+
"adam_beta2": 0.95,
|
193 |
+
"adam_epsilon": 1e-08,
|
194 |
+
"learning_rate": 1e-05,
|
195 |
+
"weight_decay": 0.1,
|
196 |
+
"gradient_accumulation_steps": 2,
|
197 |
+
"max_grad_norm": 1,
|
198 |
+
"predict_with_generate": false,
|
199 |
+
"lr_scheduler_type": "cosine",
|
200 |
+
"lr_scheduler_kwargs": {},
|
201 |
+
"warmup_ratio": 0.05,
|
202 |
+
"warmup_steps": 0,
|
203 |
+
"eval_steps": 200,
|
204 |
+
"save_steps": 200,
|
205 |
+
"save_only_model": false,
|
206 |
+
"save_total_limit": 2,
|
207 |
+
"logging_steps": 5,
|
208 |
+
"acc_steps": 1,
|
209 |
+
"dataloader_num_workers": 1,
|
210 |
+
"dataloader_pin_memory": true,
|
211 |
+
"dataloader_drop_last": false,
|
212 |
+
"push_to_hub": false,
|
213 |
+
"hub_model_id": null,
|
214 |
+
"hub_token": null,
|
215 |
+
"hub_private_repo": false,
|
216 |
+
"hub_strategy": "every_save",
|
217 |
+
"test_oom_error": false,
|
218 |
+
"disable_tqdm": false,
|
219 |
+
"lazy_tokenize": true,
|
220 |
+
"preprocess_num_proc": 1,
|
221 |
+
"use_flash_attn": null,
|
222 |
+
"ignore_args_error": false,
|
223 |
+
"check_model_is_latest": true,
|
224 |
+
"logging_dir": "/home/patrickbarker/output/qwen2-vl-7b-instruct/v4-20241227-193713/runs",
|
225 |
+
"report_to": [
|
226 |
+
"wandb"
|
227 |
+
],
|
228 |
+
"acc_strategy": "token",
|
229 |
+
"save_on_each_node": false,
|
230 |
+
"evaluation_strategy": "steps",
|
231 |
+
"save_strategy": "steps",
|
232 |
+
"save_safetensors": true,
|
233 |
+
"gpu_memory_fraction": null,
|
234 |
+
"include_num_input_tokens_seen": false,
|
235 |
+
"local_repo_path": null,
|
236 |
+
"custom_register_path": null,
|
237 |
+
"custom_dataset_info": null,
|
238 |
+
"device_map_config": null,
|
239 |
+
"device_max_memory": [],
|
240 |
+
"max_new_tokens": 2048,
|
241 |
+
"do_sample": null,
|
242 |
+
"temperature": null,
|
243 |
+
"top_k": null,
|
244 |
+
"top_p": null,
|
245 |
+
"repetition_penalty": null,
|
246 |
+
"num_beams": 1,
|
247 |
+
"fsdp": "",
|
248 |
+
"fsdp_config": null,
|
249 |
+
"sequence_parallel_size": 1,
|
250 |
+
"model_layer_cls_name": null,
|
251 |
+
"metric_warmup_step": 0,
|
252 |
+
"fsdp_num": 1,
|
253 |
+
"per_device_train_batch_size": null,
|
254 |
+
"per_device_eval_batch_size": null,
|
255 |
+
"eval_strategy": null,
|
256 |
+
"self_cognition_sample": 0,
|
257 |
+
"train_dataset_mix_ratio": 0.0,
|
258 |
+
"train_dataset_mix_ds": [
|
259 |
+
"ms-bench"
|
260 |
+
],
|
261 |
+
"train_dataset_sample": -1,
|
262 |
+
"val_dataset_sample": null,
|
263 |
+
"safe_serialization": null,
|
264 |
+
"only_save_model": null,
|
265 |
+
"neftune_alpha": null,
|
266 |
+
"deepspeed_config_path": null,
|
267 |
+
"model_cache_dir": null,
|
268 |
+
"lora_dropout_p": null,
|
269 |
+
"lora_target_modules": [],
|
270 |
+
"lora_target_regex": null,
|
271 |
+
"lora_modules_to_save": [],
|
272 |
+
"boft_target_modules": [],
|
273 |
+
"boft_modules_to_save": [],
|
274 |
+
"vera_target_modules": [],
|
275 |
+
"vera_modules_to_save": [],
|
276 |
+
"ia3_target_modules": [],
|
277 |
+
"ia3_modules_to_save": [],
|
278 |
+
"custom_train_dataset_path": [],
|
279 |
+
"custom_val_dataset_path": [],
|
280 |
+
"device_map_config_path": null,
|
281 |
+
"push_hub_strategy": null,
|
282 |
+
"use_self_cognition": false,
|
283 |
+
"is_multimodal": true,
|
284 |
+
"is_vision": true,
|
285 |
+
"lora_use_embedding": false,
|
286 |
+
"lora_use_all": false,
|
287 |
+
"lora_m2s_use_embedding": false,
|
288 |
+
"lora_m2s_use_ln": false,
|
289 |
+
"torch_dtype": "torch.bfloat16",
|
290 |
+
"fp16": false,
|
291 |
+
"bf16": true,
|
292 |
+
"rank": 0,
|
293 |
+
"local_rank": 0,
|
294 |
+
"world_size": 8,
|
295 |
+
"local_world_size": 8,
|
296 |
+
"bnb_4bit_compute_dtype": "torch.bfloat16",
|
297 |
+
"load_in_4bit": false,
|
298 |
+
"load_in_8bit": false,
|
299 |
+
"train_sampler_random": true,
|
300 |
+
"train_type": "sft",
|
301 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/home/patrickbarker/output/qwen2-vl-7b-instruct/v4-20241227-193713', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=2, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1, num_train_epochs=5, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs={}, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/patrickbarker/output/qwen2-vl-7b-instruct/v4-20241227-193713/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=200, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend='nccl', tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=200, dataloader_num_workers=1, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/patrickbarker/output/qwen2-vl-7b-instruct/v4-20241227-193713', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'optimizer': {'type': 'AdamW', 'params': {'lr': 'auto', 'betas': 'auto', 'eps': 'auto', 'weight_decay': 'auto'}}, 'scheduler': {'type': 'WarmupCosineLR', 'params': {'total_num_steps': 'auto', 'warmup_num_steps': 'auto'}}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['wandb'], ddp_find_unused_parameters=False, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=False, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=False, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy=None, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=False, include_num_input_tokens_seen=False, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=False, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=GenerationConfig {\n \"bos_token_id\": 151643,\n \"do_sample\": true,\n \"eos_token_id\": 151645,\n \"max_new_tokens\": 2048,\n \"pad_token_id\": 151643,\n \"temperature\": 0.01,\n \"top_k\": 1,\n \"top_p\": 0.001\n}\n, acc_strategy='token', loss_name=None, additional_saved_files=[], train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1)"
|
302 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
|
3 |
+
size 11420371
|
tokenizer_config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"extra_special_tokens": {},
|
138 |
+
"model_max_length": 32768,
|
139 |
+
"pad_token": "<|endoftext|>",
|
140 |
+
"padding_side": "left",
|
141 |
+
"split_special_tokens": false,
|
142 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
143 |
+
"unk_token": null
|
144 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.29447925,
|
3 |
+
"best_model_checkpoint": "/home/patrickbarker/output/qwen2-vl-7b-instruct/v4-20241227-193713/checkpoint-35",
|
4 |
+
"epoch": 4.4,
|
5 |
+
"eval_steps": 200,
|
6 |
+
"global_step": 35,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"acc": 0.78819823,
|
13 |
+
"epoch": 0.13333333333333333,
|
14 |
+
"grad_norm": 56.16291588852024,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 1.50741768,
|
17 |
+
"memory(GiB)": 54.69,
|
18 |
+
"step": 1,
|
19 |
+
"train_speed(iter/s)": 0.023135
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"acc": 0.8331359,
|
23 |
+
"epoch": 0.6666666666666666,
|
24 |
+
"grad_norm": 23.585686677807654,
|
25 |
+
"learning_rate": 9.797485121585682e-06,
|
26 |
+
"loss": 1.13953185,
|
27 |
+
"memory(GiB)": 73.87,
|
28 |
+
"step": 5,
|
29 |
+
"train_speed(iter/s)": 0.030499
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"acc": 0.77300258,
|
33 |
+
"epoch": 1.2666666666666666,
|
34 |
+
"grad_norm": 9.184454728437117,
|
35 |
+
"learning_rate": 8.930372447166567e-06,
|
36 |
+
"loss": 0.82231588,
|
37 |
+
"memory(GiB)": 73.87,
|
38 |
+
"step": 10,
|
39 |
+
"train_speed(iter/s)": 0.03335
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"acc": 0.89596729,
|
43 |
+
"epoch": 1.9333333333333333,
|
44 |
+
"grad_norm": 9.996269150167423,
|
45 |
+
"learning_rate": 7.077367357502932e-06,
|
46 |
+
"loss": 0.59573269,
|
47 |
+
"memory(GiB)": 73.87,
|
48 |
+
"step": 15,
|
49 |
+
"train_speed(iter/s)": 0.033366
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"acc": 0.82209816,
|
53 |
+
"epoch": 2.533333333333333,
|
54 |
+
"grad_norm": 3.8888089608671805,
|
55 |
+
"learning_rate": 4.762614211839201e-06,
|
56 |
+
"loss": 0.45042038,
|
57 |
+
"memory(GiB)": 73.87,
|
58 |
+
"step": 20,
|
59 |
+
"train_speed(iter/s)": 0.03415
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"acc": 0.82671137,
|
63 |
+
"epoch": 3.1333333333333333,
|
64 |
+
"grad_norm": 5.551126458017844,
|
65 |
+
"learning_rate": 2.9236326424970685e-06,
|
66 |
+
"loss": 0.38845139,
|
67 |
+
"memory(GiB)": 73.87,
|
68 |
+
"step": 25,
|
69 |
+
"train_speed(iter/s)": 0.034641
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"acc": 0.92284222,
|
73 |
+
"epoch": 3.8,
|
74 |
+
"grad_norm": 3.1841046339599792,
|
75 |
+
"learning_rate": 1.070627552833434e-06,
|
76 |
+
"loss": 0.41313691,
|
77 |
+
"memory(GiB)": 73.87,
|
78 |
+
"step": 30,
|
79 |
+
"train_speed(iter/s)": 0.034428
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"acc": 0.8380208,
|
83 |
+
"epoch": 4.4,
|
84 |
+
"grad_norm": 3.1924122632651946,
|
85 |
+
"learning_rate": 9.134747803509838e-08,
|
86 |
+
"loss": 0.31420252,
|
87 |
+
"memory(GiB)": 73.87,
|
88 |
+
"step": 35,
|
89 |
+
"train_speed(iter/s)": 0.034743
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 4.4,
|
93 |
+
"eval_acc": 0.8957055214723927,
|
94 |
+
"eval_loss": 0.29447925090789795,
|
95 |
+
"eval_runtime": 5.161,
|
96 |
+
"eval_samples_per_second": 1.163,
|
97 |
+
"eval_steps_per_second": 0.194,
|
98 |
+
"step": 35
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"logging_steps": 5,
|
102 |
+
"max_steps": 35,
|
103 |
+
"num_input_tokens_seen": 0,
|
104 |
+
"num_train_epochs": 5,
|
105 |
+
"save_steps": 200,
|
106 |
+
"stateful_callbacks": {
|
107 |
+
"TrainerControl": {
|
108 |
+
"args": {
|
109 |
+
"should_epoch_stop": false,
|
110 |
+
"should_evaluate": false,
|
111 |
+
"should_log": false,
|
112 |
+
"should_save": true,
|
113 |
+
"should_training_stop": true
|
114 |
+
},
|
115 |
+
"attributes": {}
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"total_flos": 79586798469120.0,
|
119 |
+
"train_batch_size": 1,
|
120 |
+
"trial_name": null,
|
121 |
+
"trial_params": null
|
122 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e595837feea2b5845d7f7ac34831990832c0e48bbdfb2d6b368a01deda0625e
|
3 |
+
size 10680
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|