File size: 6,966 Bytes
d1bcbec dec7b74 d1bcbec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
license: cc-by-nc-4.0
datasets:
- passing2961/stark-dialogue
- passing2961/stark-face-image
language:
- en
base_model:
- meta-llama/Llama-3.2-11B-Vision-Instruct
tags:
- conversational ai
---
# Ultron-Summarizer-8B Model Card
[π Homepage](https://stark-dataset.github.io/) | [π» Github](https://github.com/passing2961/Stark) | [π Arxiv](https://arxiv.org/abs/2407.03958) | [π PDF](https://arxiv.org/pdf/2407.03958)
## List of Provided Model Series
- **Ultron-Summarizer-Series:** [π€ Ultron-Summarizer-1B](https://huggingface.co/passing2961/Ultron-Summarizer-1B) | [π€ Ultron-Summarizer-3B](https://huggingface.co/passing2961/Ultron-Summarizer-3B) | [π€ Ultron-Summarizer-8B](https://huggingface.co/passing2961/Ultron-Summarizer-8B)
- **Ultron 7B**: [π€ Ultron-7B](https://huggingface.co/passing2961/Ultron-7B) | [π€ Ultron-11B](https://huggingface.co/passing2961/Ultron-11B)
> π¨ Disclaimer: All models and datasets are intended for research purposes only.
## Model Description
- **Repository:** [Code](https://github.com/passing2961/Stark)
- **Paper:** [Stark: Social Long-Term Multi-Modal Conversation with Persona Commonsense Knowledge](https://arxiv.org/abs/2407.03958)
- **Point of Contact:** [Young-Jun Lee](mailto:[email protected])
## Model Details
- **Model**: Ultron-11B is a fully open-source multi-modal conversation model that generates the most appropriate image description at the image-sharing moment.
- **Date**: Ultron-11B was trained in 2024.
- **Training Dataset**: [Stark-Dialogue](https://huggingface.co/datasets/passing2961/stark-dialogue)
- **Architecture**: Ultron-11B was trained on top of [LLaMA-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct).
## How to Use
```python
import logging
from PIL import Image
import torch
from transformers import (
AutoModelForVision2Seq,
BitsAndBytesConfig,
AutoProcessor,
)
# Define Ultron template
ULTRON_TEMPLATE = 'You are an excellent image sharing system that generates <RET> token with the following image description. The image description must be provided with the following format: <RET> <h> image description </h>. The following conversation is between {name} and AI assistant on {date}. The given image is {name}\'s appearance.\n{dialogue}'
# Ultron model initialization
def load_ultron_model(model_path):
"""
Loads the Ultron model and processor.
Args:
model_path (str): Path to the pre-trained model.
Returns:
model: Loaded Vision-to-Seq model.
processor: Corresponding processor for the model.
"""
logging.info(f"Loading Ultron model from {model_path}...")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
model_kwargs = dict(
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(
'meta-llama/Llama-3.2-11B-Vision-Instruct', torch_dtype=torch.bfloat16
)
model = AutoModelForVision2Seq.from_pretrained(
model_path,
**model_kwargs
).eval()
logging.info("Ultron model loaded successfully.")
return model, processor
# Run Ultron model
def run_ultron_model(model, processor, dialogue, name='Tom', date='2023.04.20', face_image_path='sample_face.png'):
"""
Runs the Ultron model with a given dialogue, name, and image.
Args:
model: Pre-trained model instance.
processor: Processor for model input.
dialogue (str): Input dialogue for the assistant.
name (str): Name of the user.
date (str): Date of the conversation.
face_image_path (str): Path to the face image file.
Returns:
str: Description of the shared image.
"""
logging.info("Running Ultron model...")
face_image = Image.open(face_image_path).convert("RGB")
prompt = ULTRON_TEMPLATE.format(
dialogue=dialogue,
name=name,
date=date
)
messages = [
{
"content": [
{"text": prompt, "type": "text"},
{"type": "image"}
],
"role": "user"
},
]
logging.info("Preparing input for Ultron model...")
prompt_input = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(face_image, prompt_input, return_tensors='pt').to('cuda')
with torch.inference_mode():
logging.info("Generating output from Ultron model...")
output = model.generate(
**inputs,
do_sample=True,
temperature=0.9,
max_new_tokens=512,
top_p=1.0,
use_cache=True,
num_beams=1,
)
output_text = processor.decode(output[0], skip_special_token=True)
logging.info("Output generated successfully from Ultron model.")
return parse_ultron_output(output_text)
# Parse Ultron output
def parse_ultron_output(output):
"""
Parses the output to extract the image description.
Args:
output (str): The generated output text from the model.
Returns:
str: Extracted image description.
"""
logging.info("Parsing output from Ultron model...")
if '<RET>' in output:
return output.split('<h>')[-1].split('</h>')[0].strip()
else:
logging.warning("<RET> not found in output.")
return output
# Example usage
def main():
"""
Example usage of Ultron model.
"""
model_path = "passing2961/Ultron-11B"
model, processor = load_ultron_model(model_path)
dialogue = """Tom: I have so much work at the office, I'm exhausted...
Personal AI Assistant: How can I help you feel less tired?
Tom: Hmm.. I miss my dog Star at home.
Personal AI Assistant: """
image_description = run_ultron_model(model, processor, dialogue)
logging.info(f"Image description generated: {image_description}")
if __name__ == "__main__":
main()
```
## License and Recommendations
π¨ Ultron-11B is intended to be used for research purposes only.
## Acknowledgement
This work was supported by a grant of the KAIST-KT joint research project through AI Tech Lab, Institute of convergence Technology, funded by KT [Project No. G01230605, Development of Task-oriented Persona-based Dialogue Generation Combining Multi-modal Interaction and Knowledge Modeling].
## Citation
If you find the resources in this repository useful, please cite our work:
```
@article{lee2024stark,
title={Stark: Social Long-Term Multi-Modal Conversation with Persona Commonsense Knowledge},
author={Lee, Young-Jun and Lee, Dokyong and Youn, Junyoung and Oh, Kyeongjin and Ko, Byungsoo and Hyeon, Jonghwan and Choi, Ho-Jin},
journal={arXiv preprint arXiv:2407.03958},
year={2024}
}
``` |