--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer - calibration - uncertainty model-index: - name: apricot_clustering_trivia_qa_deberta-v3-base_for_vicuna-7b-v1.5 results: [] datasets: - mandarjoshi/trivia_qa --- # apricot_clustering_trivia_qa_deberta-v3-base_for_vicuna-7b-v1.5 This model is fine-tuned for black-box LLM calibration as part of the 🍑 Apricot paper ["Calibrating Large Language Models Using Their Generations Only"](https://github.com/parameterlab/apricot) (ACL 2024). ## Model description This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) to predict the calibration score for the [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) model on the questions from the trivia_qa dataset. It uses the clustering type of calibration target score. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters **TODO**: update the values below The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.0+cu117 - Datasets 2.14.6 - Tokenizers 0.13.3