Papers
arxiv:2412.01199

TinyFusion: Diffusion Transformers Learned Shallow

Published on Dec 2, 2024
· Submitted by horseee on Dec 3, 2024
Authors:
,

Abstract

Diffusion Transformers have demonstrated remarkable capabilities in image generation but often come with excessive parameterization, resulting in considerable inference overhead in real-world applications. In this work, we present TinyFusion, a depth pruning method designed to remove redundant layers from diffusion transformers via end-to-end learning. The core principle of our approach is to create a pruned model with high recoverability, allowing it to regain strong performance after fine-tuning. To accomplish this, we introduce a differentiable sampling technique to make pruning learnable, paired with a co-optimized parameter to simulate future fine-tuning. While prior works focus on minimizing loss or error after pruning, our method explicitly models and optimizes the post-fine-tuning performance of pruned models. Experimental results indicate that this learnable paradigm offers substantial benefits for layer pruning of diffusion transformers, surpassing existing importance-based and error-based methods. Additionally, TinyFusion exhibits strong generalization across diverse architectures, such as DiTs, MARs, and SiTs. Experiments with DiT-XL show that TinyFusion can craft a shallow diffusion transformer at less than 7% of the pre-training cost, achieving a 2times speedup with an FID score of 2.86, outperforming competitors with comparable efficiency. Code is available at https://github.com/VainF/TinyFusion.

Community

Paper author Paper submitter

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2412.01199 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2412.01199 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2412.01199 in a Space README.md to link it from this page.

Collections including this paper 3