Papers
arxiv:2410.24024

AndroidLab: Training and Systematic Benchmarking of Android Autonomous Agents

Published on Oct 31, 2024
ยท Submitted by ShawLiu on Nov 5, 2024
#1 Paper of the day
Authors:
,
,
,

Abstract

Autonomous agents have become increasingly important for interacting with the real world. Android agents, in particular, have been recently a frequently-mentioned interaction method. However, existing studies for training and evaluating Android agents lack systematic research on both open-source and closed-source models. In this work, we propose AndroidLab as a systematic Android agent framework. It includes an operation environment with different modalities, action space, and a reproducible benchmark. It supports both large language models (LLMs) and multimodal models (LMMs) in the same action space. AndroidLab benchmark includes predefined Android virtual devices and 138 tasks across nine apps built on these devices. By using the AndroidLab environment, we develop an Android Instruction dataset and train six open-source LLMs and LMMs, lifting the average success rates from 4.59% to 21.50% for LLMs and from 1.93% to 13.28% for LMMs. AndroidLab is open-sourced and publicly available at https://github.com/THUDM/Android-Lab.

Community

Paper author Paper submitter

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

My read of this paper:

Capture dโ€™eฬcran 2024-11-08 aฬ€ 10.38.55.png

๐—”๐—ป๐—ฑ๐—ฟ๐—ผ๐—ถ๐—ฑ๐—Ÿ๐—ฎ๐—ฏ: ๐—™๐—ถ๐—ฟ๐˜€๐˜ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ ๐—ฏ๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ ๐—ณ๐—ผ๐—ฟ ๐—”๐—ป๐—ฑ๐—ฟ๐—ผ๐—ถ๐—ฑ ๐—บ๐—ผ๐—ฏ๐—ถ๐—น๐—ฒ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜€๐—ต๐—ผ๐˜„๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐˜€๐—บ๐—ฎ๐—น๐—น, ๐—ณ๐—ถ๐—ป๐—ฒ-๐˜๐˜‚๐—ป๐—ฒ๐—ฑ ๐—ผ๐—ฝ๐—ฒ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ ๐—ฐ๐—ฎ๐—ป ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ฎ ๐—๐—”๐—ฅ๐—ฉ๐—œ๐—ฆ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ผ๐—ป ๐˜†๐—ผ๐˜‚๐—ฟ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜๐—ฝ๐—ต๐—ผ๐—ป๐—ฒ ๐Ÿ“ฑ๐Ÿ”ฅ

A team from Tsinghua University just released AndroidLab, the first systematic framework to evaluate and train Android mobile agents that works with both text-only and multimodal models.

They show that fine-tuning small open-source models can significantly boost performance, matching that of much bigger closed models like GPT-4o.

The team built:

๐Ÿ“Š A reproducible benchmark with 138 tasks across 9 apps to evaluate mobile agents systematically

๐Ÿ“๐Ÿ“ฑ A framework supporting both text-only (via XML) and visual (via marked screenshots) interfaces

โœ… An instruction dataset of 10.5k operation traces for training mobile agents

Key insights:

  • ๐Ÿ“ˆ Fine-tuning improves performance BY A LOT: Open-source model Llama-3.1-8B improves from 2% to 24% success rate after training, nearly reaching GPT-4o performance although itโ€™s much smaller
  • โš™๏ธ Text-only agents match multimodal ones: XML-based agents achieve similar performance to screenshot-based multimodal agents.

Congrats for this great work ๐Ÿค—

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2410.24024 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2410.24024 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2410.24024 in a Space README.md to link it from this page.

Collections including this paper 7