Papers
arxiv:2409.12490

CritiPrefill: A Segment-wise Criticality-based Approach for Prefilling Acceleration in LLMs

Published on Sep 19, 2024
Authors:
,
,
,
,
,

Abstract

Large language models have achieved notable success across various domains, yet efficient inference is still limited by the quadratic computation complexity of the attention mechanism. The inference consists of prefilling and decoding phases. Although several attempts have been made to accelerate decoding, the inefficiency of the prefilling phase, especially for long-context tasks, remains a challenge. In this paper, we observe a locality in query criticality during the prefilling phase of long-context processing: adjacent query tokens tend to focus on similar subsets of the past Key-Value (KV) cache. Based on this observation, we propose CritiPrefill, a criticality-based segment-wise prefilling method. This method partitions the input sequence's queries and KV cache into segments and blocks, utilizing a segment-wise algorithm to estimate the query criticality. By pruning non-critical computations between query segments and cache blocks in the self-attention mechanism, the prefilling process can be significantly accelerated. Extensive evaluations on multiple long-context datasets show up to 2.7x speedup on Llama3-8B and 3.0x speedup on Yi-9B for 128K context length on a single A100 GPU, with minimal quality degradation.

Community

@librarian-bot recommend

·

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2409.12490 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2409.12490 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2409.12490 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.