Papers
arxiv:2406.18510

WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models

Published on Jun 26, 2024
Ā· Submitted by liweijiang on Jun 27, 2024

Abstract

We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.

Community

Paper author Paper submitter

We introduce WildTeaming, an automatic red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes selections of multiple mined tactics for systematic exploration of novel and even more challenging jailbreaks. WildTeaming intends to address two challenges:

šŸ” Broadly identifying jailbroken behaviors of LLMs.
šŸ› ļø Creating a publicly open, large-scale safety training resource for systematic defense (WildJailbreak).
For more findings, please refer to our paper!

concept_fig.png

Sign up or log in to comment

Models citing this paper 6

Browse 6 models citing this paper

Datasets citing this paper 2

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2406.18510 in a Space README.md to link it from this page.

Collections including this paper 1