Papers
arxiv:2406.16341

EHRCon: Dataset for Checking Consistency between Unstructured Notes and Structured Tables in Electronic Health Records

Published on Jun 24, 2024
· Submitted by jiho283 on Jun 27, 2024
Authors:
,
,

Abstract

Electronic Health Records (EHRs) are integral for storing comprehensive patient medical records, combining structured data (e.g., medications) with detailed clinical notes (e.g., physician notes). These elements are essential for straightforward data retrieval and provide deep, contextual insights into patient care. However, they often suffer from discrepancies due to unintuitive EHR system designs and human errors, posing serious risks to patient safety. To address this, we developed EHRCon, a new dataset and task specifically designed to ensure data consistency between structured tables and unstructured notes in EHRs. EHRCon was crafted in collaboration with healthcare professionals using the MIMIC-III EHR dataset, and includes manual annotations of 3,943 entities across 105 clinical notes checked against database entries for consistency. EHRCon has two versions, one using the original MIMIC-III schema, and another using the OMOP CDM schema, in order to increase its applicability and generalizability. Furthermore, leveraging the capabilities of large language models, we introduce CheckEHR, a novel framework for verifying the consistency between clinical notes and database tables. CheckEHR utilizes an eight-stage process and shows promising results in both few-shot and zero-shot settings. The code is available at https://github.com/dustn1259/EHRCon.

Community

Paper author Paper submitter

Hi @jiho283 congrats on this work! Are you planning to share any artifacts (datasets, models, demos) on the hub?

See here for more details: https://huggingface.co/docs/datasets/loading

·
Paper author

Hello @nielsr First off, there is no newly trained model, and the code for the framework will be released on GitHub.

We plan to upload the dataset to Hugging Face, but our dataset is based on the MIMIC-III database, and only those approved by PhysioNet should have access to it. Thus, we intend to upload the dataset to PhysioNet, but is there a way on Hugging Face to restrict access only to those authorized by PhysioNet? If so, could you please provide the documentation for this process?

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2406.16341 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2406.16341 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2406.16341 in a Space README.md to link it from this page.

Collections including this paper 4