Papers
arxiv:2406.14852

Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models

Published on Jun 21, 2024
Authors:
,
,

Abstract

Large language models (LLMs) and vision-language models (VLMs) have demonstrated remarkable performance across a wide range of tasks and domains. Despite this promise, spatial understanding and reasoning -- a fundamental component of human cognition -- remains under-explored. We develop novel benchmarks that cover diverse aspects of spatial reasoning such as relationship understanding, navigation, and counting. We conduct a comprehensive evaluation of competitive language and vision-language models. Our findings reveal several counter-intuitive insights that have been overlooked in the literature: (1) Spatial reasoning poses significant challenges where competitive models can fall behind random guessing; (2) Despite additional visual input, VLMs often under-perform compared to their LLM counterparts; (3) When both textual and visual information is available, multi-modal language models become less reliant on visual information if sufficient textual clues are provided. Additionally, we demonstrate that leveraging redundancy between vision and text can significantly enhance model performance. We hope our study will inform the development of multimodal models to improve spatial intelligence and further close the gap with human intelligence.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2406.14852 in a model README.md to link it from this page.

Datasets citing this paper 2

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2406.14852 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.