Papers
arxiv:2403.11650

Prioritized Semantic Learning for Zero-shot Instance Navigation

Published on Mar 18, 2024
Authors:
,
,
,

Abstract

We study zero-shot instance navigation, in which the agent navigates to a specific object without using object annotations for training. Previous object navigation approaches apply the image-goal navigation (ImageNav) task (go to the location of an image) for pretraining, and transfer the agent to achieve object goals using a vision-language model. However, these approaches lead to issues of semantic neglect, where the model fails to learn meaningful semantic alignments. In this paper, we propose a Prioritized Semantic Learning (PSL) method to improve the semantic understanding ability of navigation agents. Specifically, a semantic-enhanced PSL agent is proposed and a prioritized semantic training strategy is introduced to select goal images that exhibit clear semantic supervision and relax the reward function from strict exact view matching. At inference time, a semantic expansion inference scheme is designed to preserve the same granularity level of the goal semantic as training. Furthermore, for the popular HM3D environment, we present an Instance Navigation (InstanceNav) task that requires going to a specific object instance with detailed descriptions, as opposed to the Object Navigation (ObjectNav) task where the goal is defined merely by the object category. Our PSL agent outperforms the previous state-of-the-art by 66% on zero-shot ObjectNav in terms of success rate and is also superior on the new InstanceNav task. Code will be released at https://github.com/XinyuSun/PSL-InstanceNav.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2403.11650 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2403.11650 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2403.11650 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.