Papers
arxiv:2403.09326

HeadEvolver: Text to Head Avatars via Locally Learnable Mesh Deformation

Published on Mar 14, 2024
Authors:
,
,
,
,
,
,
,
,
,

Abstract

We present HeadEvolver, a novel framework to generate stylized head avatars from text guidance. HeadEvolver uses locally learnable mesh deformation from a template head mesh, producing high-quality digital assets for detail-preserving editing and animation. To tackle the challenges of lacking fine-grained and semantic-aware local shape control in global deformation through Jacobians, we introduce a trainable parameter as a weighting factor for the Jacobian at each triangle to adaptively change local shapes while maintaining global correspondences and facial features. Moreover, to ensure the coherence of the resulting shape and appearance from different viewpoints, we use pretrained image diffusion models for differentiable rendering with regularization terms to refine the deformation under text guidance. Extensive experiments demonstrate that our method can generate diverse head avatars with an articulated mesh that can be edited seamlessly in 3D graphics software, facilitating downstream applications such as more efficient animation with inherited blend shapes and semantic consistency.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2403.09326 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2403.09326 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2403.09326 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.