Papers
arxiv:2403.06976

BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion

Published on Mar 11, 2024
Authors:
,
,
,

Abstract

Image inpainting, the process of restoring corrupted images, has seen significant advancements with the advent of diffusion models (DMs). Despite these advancements, current DM adaptations for inpainting, which involve modifications to the sampling strategy or the development of inpainting-specific DMs, frequently suffer from semantic inconsistencies and reduced image quality. Addressing these challenges, our work introduces a novel paradigm: the division of masked image features and noisy latent into separate branches. This division dramatically diminishes the model's learning load, facilitating a nuanced incorporation of essential masked image information in a hierarchical fashion. Herein, we present BrushNet, a novel plug-and-play dual-branch model engineered to embed pixel-level masked image features into any pre-trained DM, guaranteeing coherent and enhanced image inpainting outcomes. Additionally, we introduce BrushData and BrushBench to facilitate segmentation-based inpainting training and performance assessment. Our extensive experimental analysis demonstrates BrushNet's superior performance over existing models across seven key metrics, including image quality, mask region preservation, and textual coherence.

Community

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2403.06976 in a dataset README.md to link it from this page.

Spaces citing this paper 8

Collections including this paper 14