Papers
arxiv:2402.04925

TP-Aware Dequantization

Published on Jan 15, 2024
· Submitted by akhaliq on Feb 8, 2024

Abstract

In this paper, we present a novel method that reduces model inference latency during distributed deployment of Large Language Models (LLMs). Our contribution is an optimized inference deployment scheme that address the current limitations of state-of-the-art quantization kernels when used in conjunction with Tensor Parallel (TP). Our method preserves data locality in GPU memory access patterns and exploits a priori knowledge of TP to reduce global communication. We demonstrate an up to 1.81x speedup over existing methods for Llama-70B and up to 1.78x speedup for IBM WatsonX's Granite-20B MLP layer problem sizes on A100 and H100 NVIDIA DGX Systems for a variety of TP settings.

Community

does it work for other quantization methods besides GPTQ?

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2402.04925 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2402.04925 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2402.04925 in a Space README.md to link it from this page.

Collections including this paper 3