Papers
arxiv:2310.00679

CebuaNER: A New Baseline Cebuano Named Entity Recognition Model

Published on Oct 1, 2023
Authors:
,
,
,
,
,
,
,
,

Abstract

Despite being one of the most linguistically diverse groups of countries, computational linguistics and language processing research in Southeast Asia has struggled to match the level of countries from the Global North. Thus, initiatives such as open-sourcing corpora and the development of baseline models for basic language processing tasks are important stepping stones to encourage the growth of research efforts in the field. To answer this call, we introduce CebuaNER, a new baseline model for named entity recognition (NER) in the Cebuano language. Cebuano is the second most-used native language in the Philippines, with over 20 million speakers. To build the model, we collected and annotated over 4,000 news articles, the largest of any work in the language, retrieved from online local Cebuano platforms to train algorithms such as Conditional Random Field and Bidirectional LSTM. Our findings show promising results as a new baseline model, achieving over 70% performance on precision, recall, and F1 across all entity tags, as well as potential efficacy in a crosslingual setup with Tagalog.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2310.00679 in a model README.md to link it from this page.

Datasets citing this paper 2

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2310.00679 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.