Text Generation
Transformers
PyTorch
Safetensors
English
llama
Eval Results
text-generation-inference
Inference Endpoints
Pankaj Mathur commited on
Commit
c95d44c
·
1 Parent(s): b47e7f0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +161 -0
README.md CHANGED
@@ -1,3 +1,164 @@
1
  ---
2
  license: mit
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ library_name: adapter-transformers
6
  ---
7
+ # Wizardlm Alpaca Dolly Orca Open_LLaMa_13b
8
+ An Open_LLaMA-7B model trained on custom explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.
9
+
10
+
11
+ # Dataset
12
+
13
+ We trained [OpenLLaMa-13B model](https://github.com/openlm-research/open_llama) on custom explain tuned [WizardLM ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) & [Dolly-V2 ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707).
14
+
15
+ We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets.
16
+
17
+ This helps student model aka [wizardlm_alpaca_dolly_orca_open_llama_7b](https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_7b) to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).
18
+
19
+ Please see below example usage how the **System** prompt is added before each *instruction*.
20
+
21
+ # Training
22
+
23
+ The training configurations are provided in the table below.
24
+
25
+ The training takes on 8x A100(80G) GPUs and lasts for around 7 Hours for cost of $84 using [Lambda Labs](https://lambdalabs.com)
26
+
27
+ We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca)
28
+
29
+ Here are some of params used during training:
30
+
31
+ |||
32
+ |:-------------:|:-------------:|
33
+ |*batch_size*|32|
34
+ |*train_micro_batch_size_per_gpu*|2|
35
+ |*gradient_accumulation_steps*|2|
36
+ |*Learning rate*|2e-5|
37
+ |*Max length*|1024|
38
+ |*Epochs*|3|
39
+
40
+
41
+
42
+ # Example Usage
43
+
44
+ Below shows an example on how to use this model
45
+
46
+ ```python
47
+ import torch
48
+ from transformers import LlamaForCausalLM, LlamaTokenizer
49
+
50
+ # Hugging Face model_path
51
+ model_path = 'psmathur/wizardlm_alpaca_dolly_orca_open_llama_7b'
52
+ tokenizer = LlamaTokenizer.from_pretrained(model_path)
53
+ model = LlamaForCausalLM.from_pretrained(
54
+ model_path, torch_dtype=torch.float16, device_map='auto',
55
+ )
56
+
57
+
58
+ #generate text function
59
+ def generate_text(system, instruction, input=None):
60
+
61
+ if input:
62
+ prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
63
+ else:
64
+ prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n"
65
+
66
+ tokens = tokenizer.encode(prompt)
67
+ tokens = torch.LongTensor(tokens).unsqueeze(0)
68
+ tokens = tokens.to('cuda')
69
+
70
+ instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50}
71
+
72
+ length = len(tokens[0])
73
+ with torch.no_grad():
74
+ rest = model.generate(
75
+ input_ids=tokens,
76
+ max_length=length+instance['generate_len'],
77
+ use_cache=True,
78
+ do_sample=True,
79
+ top_p=instance['top_p'],
80
+ temperature=instance['temperature'],
81
+ top_k=instance['top_k']
82
+ )
83
+ output = rest[0][length:]
84
+ string = tokenizer.decode(output, skip_special_tokens=True)
85
+ return f'[!] Response: {string}'
86
+
87
+ # Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai
88
+ system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.'
89
+ instruction = 'Write a letter to Sam Altman, CEO of OpenAI, requesting him to convert GPT4 a private model by OpenAI to an open source project'
90
+ print(generate_text(system, instruction))
91
+
92
+ ```
93
+
94
+ ```
95
+
96
+ [!] Response:
97
+ Dear Sam Altman,
98
+
99
+ I am writing to request that you convert the GPT4 private model developed by OpenAI to an open source project. As a user of OpenAI, I have been waiting for the day when I can use the advanced natural language processing capabilities of GPT4 in a more open and accessible way.
100
+
101
+ While OpenAI has made significant progress in developing AI applications, it has primarily focused on building private models that are not accessible to the general public. However, with the recent release of GPT-3, there is a growing demand for more open and accessible AI tools.
102
+
103
+ Converting GPT4 to an open source project would allow for greater transparency, collaboration, and innovation. It would also help to build trust in the technology and ensure that it is used ethically and responsibly.
104
+
105
+ I urge you to consider converting GPT4 to an open source project. This would be a significant contribution to the AI community and would help to create a more open and accessible future.
106
+
107
+ Thank you for your consideration.
108
+
109
+ Sincerely,
110
+
111
+ [Your Name]
112
+
113
+ ```
114
+
115
+ **P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at [email protected]**
116
+
117
+ Next Goals:
118
+ 1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions)
119
+ 2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
120
+ 3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here)
121
+
122
+
123
+ Reference:
124
+ If you found wizardlm_alpaca_dolly_orca_open_llama_7b useful in your research or applications, please kindly cite using the following BibTeX:
125
+
126
+ ```
127
+ @misc{wizardlm_alpaca_dolly_orca_open_llama_7b,
128
+ author = {Pankaj Mathur},
129
+ title = {wizardlm_alpaca_dolly_orca_open_llama_7b: An explain tuned OpenLLaMA-7b model on custom wizardlm, alpaca, & dolly datasets},
130
+ year = {2023},
131
+ publisher = {GitHub, HuggingFace},
132
+ journal = {GitHub repository, HuggingFace repository},
133
+ howpublished = {\url{https://github.com/pankajarm/wizardlm_alpaca_dolly_orca_open_llama_7b}, \url{https://https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_7b}},
134
+ }
135
+ ```
136
+ ```
137
+ @software{openlm2023openllama,
138
+ author = {Xinyang Geng and Hao Liu},
139
+ title = {OpenLLaMA: An Open Reproduction of LLaMA},
140
+ month = May,
141
+ year = 2023,
142
+ url = {https://github.com/openlm-research/open_llama}
143
+ }
144
+ ```
145
+ ```
146
+ @misc{openalpaca,
147
+ author = {Yixuan Su and Tian Lan and Deng Cai},
148
+ title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
149
+ year = {2023},
150
+ publisher = {GitHub},
151
+ journal = {GitHub repository},
152
+ howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
153
+ }
154
+ ```
155
+ ```
156
+ @misc{alpaca,
157
+ author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
158
+ title = {Stanford Alpaca: An Instruction-following LLaMA model},
159
+ year = {2023},
160
+ publisher = {GitHub},
161
+ journal = {GitHub repository},
162
+ howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
163
+ }
164
+ ```