paisanx commited on
Commit
482bbfd
·
1 Parent(s): 993aa17

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 284.68 +/- 15.74
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 267.94 +/- 23.54
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3753957880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3753957920>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37539579c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3753957a60>", "_build": "<function ActorCriticPolicy._build at 0x7f3753957b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f3753957ba0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3753957c40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3753957ce0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3753957d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3753957e20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3753957ec0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3753957f60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f375394b340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696728597050868400, "learning_rate": 0.0006, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOfeb1Mv4E/kCGyvB+AF7/Sf/e9idoDPgAAAAAAAAAAuvlfPiA42j41bgC/i+7NvjEclD12dbS+AAAAAAAAAADNohC8cQkou5E6wbvLZI48+R4xvEjFdT0AAIA/AACAPxO2Kb7ziDk/DqqZvBBbHb+CpZC+6MsfPgAAAAAAAAAArbo+PjJajz9zkwU/q9wKv35lfD669kE+AAAAAAAAAAAaz0w9h6+yP73eFj8NOjS+/SGHuli5ED4AAAAAAAAAAM1kubv9HQw8pUpguwo2mb42ZnM9mSKFOwAAAAAAAAAA2mlXPtgPzj4OXpS+nYOtvpFEfz4y3l++AAAAAAAAAACaFPc8tNMjPu+Bij0KtHO+aAMCPpRZrD0AAAAAAAAAAJpAXD1wrTQ/QObrPdIG8r6c5uU9VwmcPQAAAAAAAAAAmqWDO3iVoDxLHHe+nvmUvplB+L2qbJy8AAAAAAAAAAAzGUE+qXO6PjVFdb6kjOu+lvrXPb+FC74AAAAAAAAAAPOVsr2Feb0/CisGv1VPmDzbiai9mhCivgAAAAAAAAAAukBGvkJW7D6ytYg+B+/pvt5RIr5Mzo0+AAAAAAAAAABm1yo9OEHVPTTxErwJhoq+kRugPfX21bwAAAAAAAAAAJroWT3DPRa6aJiGuZHrljMU/8G7HaKdOAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGrN5t3wCuMAWyUS9iMAXSUR0DKo2cBIWgwdX2UKGgGR0BQoceCCjDbaAdLkGgIR0DKo5JmVZ9vdX2UKGgGR0Bt16LuQZGbaAdL42gIR0DKo80qJ/G3dX2UKGgGR0Btgrg0j1PFaAdLxGgIR0DKo9HarWAgdX2UKGgGR0Bzkg3S8an8aAdL0WgIR0DKpCkNjLB9dX2UKGgGR0Bw+6zmfXf7aAdL22gIR0DKpGew7kn1dX2UKGgGR0BzAEM6RyOraAdLzmgIR0DKpJlAzHjqdX2UKGgGR0Bxvro6jnFHaAdLwmgIR0DKpNA6p5u7dX2UKGgGR0Bwo+CL/CIlaAdLz2gIR0DKpNhIOH32dX2UKGgGR0BvSd5hScbzaAdLxWgIR0DKpQXgtOEedX2UKGgGR0ByuMsPJ7swaAdLxGgIR0DKpSL/CIk7dX2UKGgGR0BvJGMAFPi2aAdL82gIR0DKpSrfm9xqdX2UKGgGR0BwPyHGjsUqaAdL/WgIR0DKpTmHUMG5dX2UKGgGR0By/jo6jnFHaAdL/WgIR0DKpVO4wyqNdX2UKGgGR0BzaQcFQl8gaAdL5WgIR0DKpVfBtUGWdX2UKGgGR0Bw+Yka/ATJaAdL5GgIR0DKpXjp/wy7dX2UKGgGR0Bvl0TewcHXaAdLw2gIR0DKpYl/Ue+3dX2UKGgGR0BwrSk1uR9xaAdLzmgIR0DKpa7a7EpBdX2UKGgGR0BU+dMwlByCaAdN6ANoCEdAyqXCZydWhnV9lChoBkdAcXYlq8DjimgHS/5oCEdAyqXcPxQSBnV9lChoBkdATxbNIK+i8GgHS4hoCEdAyqXu2Hck+3V9lChoBkdAcaUVs1sLv2gHS81oCEdAyqX0CWeHz3V9lChoBkdAcHYuBczIm2gHS9ZoCEdAyqY61gH/tXV9lChoBkdAUz7X05EMLGgHS5VoCEdAyqZmkeIVM3V9lChoBkdAcm0u5BkZrGgHS91oCEdAyqZz1PFefXV9lChoBkdAccyncL0BfmgHS8ZoCEdAyt4lf+CK8HV9lChoBkdAckN1v2oNu2gHS99oCEdAyt5Do24usnV9lChoBkdAcY6fhMrVfGgHS/1oCEdAyt5eIhyKenV9lChoBkdAbzyvduYQa2gHS/loCEdAyt6SksSTQnV9lChoBkdAclcPsAvL5mgHS+5oCEdAyt6UHKOktXV9lChoBkdAcYhn889wFWgHS9RoCEdAyt6ZyqdYn3V9lChoBkdAchecj7hvSGgHS/FoCEdAyt6norWiDnV9lChoBkdAb/3U70WdmWgHS9RoCEdAyt7SlzltCXV9lChoBkdAcfDTefqX4WgHS9doCEdAyt7/YjB2wHV9lChoBkdAb4XDa4+bE2gHS9poCEdAyt9hjRUm2XV9lChoBkdAcJZOlO45LmgHS+1oCEdAyt9thb4agnV9lChoBkdAcZLzqKP4mGgHS+VoCEdAyt991GLDRHV9lChoBkdAcw3/X5FgD2gHS69oCEdAyt+o2KEWZnV9lChoBkdAcKx9Gqgh82gHS9xoCEdAyt/fAEdNnHV9lChoBkdAcgaVdonKGWgHS6xoCEdAyuAVgy/KyXV9lChoBkdAcI7GCI1tO2gHS+1oCEdAyuA4txuKoHV9lChoBkdAcjh/Z/Tb4GgHS9JoCEdAyuA+Z7Xxv3V9lChoBkdAcoZwFTvRZ2gHS95oCEdAyuBxkJa7mXV9lChoBkdAcW4B3zMA3mgHS8BoCEdAyuB6Co0hvHV9lChoBkdAced/G2kSEmgHS8JoCEdAyuB7UQTVUnV9lChoBkdAcJhx8UmD2GgHS89oCEdAyuCh7kXDWXV9lChoBkdAcWJHktEofGgHS8ZoCEdAyuDNMewLVnV9lChoBkdAcVo3FDOTq2gHS9hoCEdAyuDXqagElnV9lChoBkdAcJXXN1QqJGgHS8FoCEdAyuEYWOZLI3V9lChoBkdAcWt5Jsfq5mgHTQMBaAhHQMrhH4tg8bJ1fZQoaAZHwEv748EFGG5oB0txaAhHQMrhJFXq7iB1fZQoaAZHQHHDiROk+HJoB0vHaAhHQMrhKePRzBB1fZQoaAZHQHG6k1uR9w5oB03gAWgIR0DK4TaRr8BNdX2UKGgGR0Bx8fLcKw6iaAdL8WgIR0DK4ZOqJdjYdX2UKGgGR0By1lWNm16WaAdL4mgIR0DK4a4X0oSddX2UKGgGR0BxlDoSteUqaAdL+WgIR0DK4a/1lGwzdX2UKGgGR0BzeLDye7L/aAdL0GgIR0DK4ceiL2pRdX2UKGgGR0BzVESrYGt7aAdLyWgIR0DK4duTTvy9dX2UKGgGR0BwL7987ZFoaAdL1GgIR0DK4iNUVBUrdX2UKGgGR0BvffndO6/ZaAdL1GgIR0DK4i3UYsNEdX2UKGgGR0Bv2xpg1FYuaAdL5mgIR0DK4km+oLofdX2UKGgGR0BwnFw4sEq2aAdL1WgIR0DK4k1cIJJHdX2UKGgGR0BxGdnQID5kaAdLzWgIR0DK4o9sYVIqdX2UKGgGR0Bw9+cI7eVLaAdL2mgIR0DK4ptcW0qpdX2UKGgGR0Bw2kihWYF8aAdLzWgIR0DK4rRqoIfKdX2UKGgGR0ByomoKlYU4aAdL2WgIR0DK4uRM10kodX2UKGgGR0BzgRkDp1RtaAdL02gIR0DK4uxBPbfxdX2UKGgGR0BxL6EPDpC8aAdL4GgIR0DK4vApnYg8dX2UKGgGR0Bw/sUj9n9OaAdLvGgIR0DK4z0I3R5UdX2UKGgGR0Bzq5gPVd5ZaAdLxGgIR0DK40bcKw6idX2UKGgGR0Bw04ANoakzaAdL4GgIR0DK41pOLzf8dX2UKGgGR0BzSKpjtoi+aAdL4mgIR0DK459/nW8RdX2UKGgGR0BuPxArxy4naAdL6mgIR0DK49b2FnIydX2UKGgGR0BwXBVFQVKxaAdLymgIR0DK5CFUn5SFdX2UKGgGR0ByMQLKFIuoaAdLtGgIR0DK5Dg5vLowdX2UKGgGR0ByG1B8hLXdaAdL+GgIR0DK5GGzQeFMdX2UKGgGR0BxtQOby6MBaAdL8GgIR0DK5GDtLL6ldX2UKGgGR0BxorKzRhMKaAdLwGgIR0DK5IXvQWvbdX2UKGgGR0ByvM+IMz/IaAdL9GgIR0DK5IqkTHsDdX2UKGgGR0BvBiHuZ1FIaAdLvmgIR0DK5KHb212JdX2UKGgGR0Bt5iGcnVoYaAdL4mgIR0DK5KZuIhyKdX2UKGgGR0BzWoYfnwG4aAdLvGgIR0DK5Kit5le4dX2UKGgGR0BxMDwAlv61aAdL22gIR0DK5OTc/MW5dX2UKGgGR0Buk1sYVIqcaAdLxGgIR0DK5QcPOIIodX2UKGgGR0BxjFYbKifyaAdL3WgIR0DK5S4PwuuidX2UKGgGR0BvL/5DZ13daAdL1mgIR0DK5VjuUliSdX2UKGgGR0BzX+rQw9JSaAdL8mgIR0DK5e4OFxn4dX2UKGgGR0By2NEVnEl3aAdL52gIR0DK5fLyJ9ApdX2UKGgGR0BzUQIUrTYvaAdL22gIR0DK5hUgU1yedX2UKGgGR0Bzp5Mtbs4UaAdL1WgIR0DK5hjm6oVEdX2UKGgGR0ByBkVUMoc8aAdLx2gIR0DK5j1Oj7AMdX2UKGgGR0BwZ/yup0fYaAdL52gIR0DK5lEvZh8ZdX2UKGgGR0BzCz+S8rZraAdL12gIR0DK5mbIgeRxdX2UKGgGR0By54DyOJcgaAdL0WgIR0DK5or5Ec81dX2UKGgGR0By6jvhIe5naAdNAgFoCEdAyuax/c32mHV9lChoBkdAc9I+8XenAWgHS95oCEdAyua6l1r6+HV9lChoBkdAc0ozSkTHsGgHS+ZoCEdAyubEVMVUM3V9lChoBkdAczGARkEs8WgHS99oCEdAyub7wWnCO3V9lChoBkdAcOuMl1KXfWgHS8doCEdAyuckKMvRJHV9lChoBkdAcaekbgjyF2gHS+FoCEdAyucwbCrLhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS9wYWlzYW4vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXi9ob21lL3BhaXNhbi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS9wYWlzYW4vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXi9ob21lL3BhaXNhbi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9DqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.27 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.11.5", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79caa9956d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79caa9956dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79caa9956e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79caa9956ef0>", "_build": "<function ActorCriticPolicy._build at 0x79caa9956f80>", "forward": "<function ActorCriticPolicy.forward at 0x79caa9957010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79caa99570a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79caa9957130>", "_predict": "<function ActorCriticPolicy._predict at 0x79caa99571c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79caa9957250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79caa99572e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79caa9957370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79caaa0c0340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVdwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjApvcnRob19pbml0lIl1Lg==", "net_arch": {"pi": [256, 256], "vf": [256, 256]}, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "ortho_init": false}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698715967381656574, "learning_rate": 2.9634285137411235e-05, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYm/T02CLk+cBpavd7Byr6dQmA92oyYvAAAAAAAAAAAmpmwu6+QpT+GkSi9e4IXv2qkfLyyW0y9AAAAAAAAAAAmYyI+yPLhPdYMh75HY+S90zONvPWNpjwAAAAAAAAAAM3ymDw9W0e7934ovfpDHT3W44k8Js0DvgAAgD8AAIA/M59kPGNnkT/vMzw9kt9Av4aBnzz4bgy7AAAAAAAAAADmIlI9XCcYun774zqTfvA1FhYuO2niA7oAAIA/AACAP4j9ib4MdCk/ugeUvazpEb8MGOK+8R8kPgAAAAAAAAAAs7XYPU8SFT6mrj873/tKvvnLAD7mAwS+AAAAAAAAAAAAGTU+2d4iPnUAE77XJJW+qedfvYZC6z0AAAAAAAAAAM12Ur3oHaY/xK8Hv89lKr8Stg+8wPI3vgAAAAAAAAAAjQSnvcMBQLod3yezQ22Wr/Ml0rpErskzAACAPwAAgD+NcbC9rk2HuoH0vzaC/BEzAclJOPA54bUAAIA/AACAP5ohBrt4W8Y9G/Mvvir+T7616Ie9Mv1EPAAAAAAAAAAAs7HmPYrZDT43RSK9EUSRvghizDzz3G49AAAAAAAAAABAOfo9/qqHPxr8gD5TIzK/GAIVPqiSdL0AAAAAAAAAAGZCd73kngc+eknWvVCWJ77Z6ka9Ci4IvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIw93OfNA2MAWyUTQ4BjAF0lEdAuIKfoV2zOXV9lChoBkdAcitX18LKFWgHS9NoCEdAuIKvO2RaHXV9lChoBkdAcYUAvtdAxGgHS7poCEdAuILpqagElnV9lChoBkdAc4mXsPatcWgHS9RoCEdAuIMSk690zXV9lChoBkdAcO3t4iX6ZmgHS8JoCEdAuIMiF49ovnV9lChoBkdAcJSBLwnYx2gHTTMBaAhHQLiDVxJNCZ51fZQoaAZHQHCBGQOnVG1oB0v6aAhHQLiDWUIcBEN1fZQoaAZHQFVmsA/9pAVoB0uKaAhHQLiDZKq4pc51fZQoaAZHQHLsrzTWoWJoB0vSaAhHQLiDahYNiH91fZQoaAZHQHLgu9SMtK9oB0v0aAhHQLiDcVDa4+d1fZQoaAZHQG7QfW+XZ5BoB0vBaAhHQLiDgMZgogF1fZQoaAZHQG7CKKpDNQloB0vLaAhHQLiDjGXXyy51fZQoaAZHQHFMfX05EMNoB0u7aAhHQLiEA1s+FDh1fZQoaAZHQEOuaNMoMKFoB0tnaAhHQLiEIgr6LwZ1fZQoaAZHQHPAUypJf6ZoB0vLaAhHQLiEIiG34Kx1fZQoaAZHQG2kRTjvNNdoB0vOaAhHQLiEdlKK5091fZQoaAZHQHJG8i0OVgRoB0vPaAhHQLiEsoB7u2J1fZQoaAZHQHBi5wGW2PVoB0vKaAhHQLiE33yI55t1fZQoaAZHQHJV4jrzGxVoB0vwaAhHQLiE7U4rBj51fZQoaAZHQHDNQmVqveRoB0vOaAhHQLiE9hP0qYt1fZQoaAZHQHJsjQNTcZdoB00yAWgIR0C4hQ/HYHxCdX2UKGgGR0BvZLxXnyNGaAdL0mgIR0C4hSNSl3yJdX2UKGgGR0Bk5v/rB0p3aAdN6ANoCEdAuIUjBN21UnV9lChoBkdAcRnSbH6uXGgHS+poCEdAuIUotdzGP3V9lChoBkdAceq163RXwWgHS9BoCEdAuIUtiBoVVXV9lChoBkdAbaWCtA9mpWgHTQwBaAhHQLiFgwj+rEN1fZQoaAZHQHKEUmplz2hoB0u6aAhHQLiFo+6RQrN1fZQoaAZHQHBui619fC1oB0vVaAhHQLiFuijcmBx1fZQoaAZHQGAVhy0a6z5oB03oA2gIR0C4hddKqXF+dX2UKGgGR0BtcUYht+CsaAdL12gIR0C4hdzIzWPMdX2UKGgGR0Bw08YpDu0DaAdLvWgIR0C4jEOj2zv7dX2UKGgGR0Bw0q6NEPUbaAdLv2gIR0C4jN0SVW0adX2UKGgGR0BzUjsw+MZQaAdLwmgIR0C4jPJjc2zfdX2UKGgGR0Bx0S2d/axpaAdL7GgIR0C4jVbD/EOzdX2UKGgGR0BxxjCj1wo9aAdL1WgIR0C4jWyNGViXdX2UKGgGR0BwX0+r2g3+aAdNCQFoCEdAuI1yxmkFfXV9lChoBkdAc2TdUbT+emgHS9hoCEdAuI1+IsRQJ3V9lChoBkdAcPg8rZrYXmgHS99oCEdAuI2I9aEBbXV9lChoBkdAccGQmeDnNmgHS+1oCEdAuI27q8lHBnV9lChoBkdAcReb+cYqG2gHTRIBaAhHQLiN+yPuG9J1fZQoaAZHQHFGQZbY9PloB0viaAhHQLiOFrTH80l1fZQoaAZHQHELCxZ+x4ZoB0u+aAhHQLiOKS1maph1fZQoaAZHQHEUQezUqhFoB0vhaAhHQLiOQe2uxKR1fZQoaAZHQHES9ovi97FoB0vfaAhHQLiOWqjJuEV1fZQoaAZHQHCcMjFAE+xoB0v2aAhHQLiOxmMfigl1fZQoaAZHQHFTuARTS9doB0vyaAhHQLiO5DGcWj51fZQoaAZHQHCG7yUcGTtoB0vKaAhHQLiPEKSxJNF1fZQoaAZHQHJkBeXzDoBoB0vbaAhHQLiPVc6vJRx1fZQoaAZHQG8EWwFC9h9oB0vKaAhHQLiPcwnH/951fZQoaAZHQHFkCROk+HJoB0vIaAhHQLiPgRDTjNp1fZQoaAZHQHHOiSaEzwdoB0vHaAhHQLiPjGN70Ft1fZQoaAZHQG5w5xzaK1poB0vHaAhHQLiPrYzBRAN1fZQoaAZHQHD6mOhkAghoB00AAWgIR0C4j+VfmcOLdX2UKGgGR0BxfH/m1YyPaAdNCAFoCEdAuI//okiUxHV9lChoBkdAcUL9d/rjYWgHS8poCEdAuJAhefI0ZXV9lChoBkdAciD+5e7cwmgHS/NoCEdAuJA/l8w6AHV9lChoBkdAcwCsKb8WK2gHS+5oCEdAuJBUIUrTY3V9lChoBkdAcVyRceKba2gHS/hoCEdAuJBWUW2w3nV9lChoBkdAc5Rhz/6wdWgHTRUBaAhHQLiQagoPTXt1fZQoaAZHQFcWDKYAsCloB03oA2gIR0C4kHjVUdaMdX2UKGgGR0BzfIomXw9aaAdLvGgIR0C4kIFvuPV/dX2UKGgGR0BxITrB0p3HaAdL82gIR0C4kKyAQQMAdX2UKGgGR0ByF+VrylN2aAdNFgFoCEdAuJD4wL3K0XV9lChoBkdAcOBL61stTWgHS/hoCEdAuJEKc0+C9XV9lChoBkdAczbc0tRNy2gHS89oCEdAuJEWBAfMfXV9lChoBkdAcjAwfhddFGgHTQUBaAhHQLiRN0bcXWR1fZQoaAZHQHGlV1bJOnFoB0v9aAhHQLiRQfcvduZ1fZQoaAZHQHDb+pS75EdoB0vDaAhHQLiRZQxvegt1fZQoaAZHQHH08an7521oB0vvaAhHQLiReAVfu1F1fZQoaAZHQHHvcvIwM6RoB0vraAhHQLiRhlLvkR11fZQoaAZHQHFWpZ8rqdJoB0vDaAhHQLiRkZIg/1R1fZQoaAZHQHHY3eizsyBoB006AWgIR0C4kZgf2bobdX2UKGgGR0ByrIevIOpbaAdLymgIR0C4kZoXj2i+dX2UKGgGR0Bwa8zBRAKOaAdLwWgIR0C4kbUeuFHsdX2UKGgGR0BzXhWKdhAoaAdL0GgIR0C4kcPZmI0qdX2UKGgGR0ByPrQID5j6aAdL/WgIR0C4kdLw4KhMdX2UKGgGR0BvryebutwKaAdLvGgIR0C4kdPp2U0OdX2UKGgGR0BylWCHymQ9aAdL9GgIR0C4keYFeOXFdX2UKGgGR0ByfMTg2qDLaAdLz2gIR0C4kip3cHnmdX2UKGgGR0BzOVYT0xubaAdLzmgIR0C4kkVpGnXNdX2UKGgGR0BvwxH7P6bfaAdL7WgIR0C4kmy+QEIPdX2UKGgGR0BxXWpgkTpQaAdL02gIR0C4knmQGOdYdX2UKGgGR0BxbHQ1JlJ6aAdL22gIR0C4knzJZGKAdX2UKGgGR0ByjKsmv4dqaAdLzGgIR0C4kpDIRywOdX2UKGgGR0Bxg+WmgrYoaAdLymgIR0C4kp/CEYfodX2UKGgGR0By5r6guh9LaAdLv2gIR0C4kq9iYsundX2UKGgGR0Bxugf4h2W6aAdLz2gIR0C4ksRzeXRgdX2UKGgGR0BzTHywwCbMaAdLvGgIR0C4ks30PH1fdX2UKGgGR0BwqQWpIczZaAdNAwFoCEdAuJMNVlwtKHV9lChoBkdAcZthNucc2mgHS9toCEdAuJMQXJo0ynV9lChoBkdAbw37dBSk02gHTQMBaAhHQLiTIre67NB1fZQoaAZHQHGJY6nzg/FoB0vqaAhHQLiTOeDFqBV1fZQoaAZHQHMllLJ0W/JoB0vsaAhHQLiTPqt5le51fZQoaAZHQG9E8SXdCVtoB0voaAhHQLiTTth/iHZ1fZQoaAZHQHOce5SWJJpoB0vHaAhHQLiTaEnssxx1fZQoaAZHQHN30DhcZ+BoB0vBaAhHQLiTmvllsgx1fZQoaAZHQHNUIDPnjhloB0vFaAhHQLiTr68QI2R1fZQoaAZHQGzUuuzQeFNoB00BAWgIR0C4k9sBhhH9dX2UKGgGR0ByR0/TspocaAdL0mgIR0C4k+l6Z6UrdX2UKGgGR0BzIHmzSkTIaAdLvWgIR0C4k+o371qWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 2.231474738148853e-08, "vf_coef": 0.8932129855308106, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/TMzMzMzMzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/EuSRbjx8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:884222b737543ae7fe372cbfabb6970629455609e2fde03cb8263ac3e32f1a2b
3
- size 148140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6355c38b70e2411a7e6239e2cf49dd7efb4cc43692684ce862d660a4a6efca26
3
+ size 1680685
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,49 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3753957880>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3753957920>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37539579c0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3753957a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f3753957b00>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f3753957ba0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3753957c40>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3753957ce0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f3753957d80>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3753957e20>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3753957ec0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3753957f60>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f375394b340>"
21
  },
22
  "verbose": 1,
23
- "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1696725591276515300,
30
- "learning_rate": 0.0005,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAEo74V5m0/MvpiPgmh5b4oCoq+euOPPgAAAAAAAAAAZtbhO+lUsT/OE7A+l30Uv1Cw0btzuUK9AAAAAAAAAACa3Pe9mz2gP/nzJb89nxO/AJHgvQra0b4AAAAAAAAAABOxwT5byQ0/GO5cvr/zvr4Pnww+lIEavgAAAAAAAAAADTefPY/mGrpm31m8YrKHNkDw47puMPi1AACAPwAAAABNV2U9KVQ+up7ALjpVhT62fkYhO4D9S7kAAIA/AACAPxrkgT2ZIUo+ULU0vqvxR77aeLK9puvHPQAAAAAAAAAAZt7Yu+GkoLpLmn+5QDhntNXjfTpwMpM4AACAPwAAgD+NsPG9X88dPkKYuz1lR2G+4I6KPRZD0TwAAAAAAAAAALMVuj17Tou69hO2OzcRhzzXW6w7iB9rvQAAgD8AAAAAM7HKvNKwSz/yVUA9Xp7Ovq5nj70jz4K8AAAAAAAAAACa3hO+w69LP9hJ/D3PJ8m+N17DvZXX4j0AAAAAAAAAAJpnBr2nMo4/Q2zHvYcYAL98hDK+3j2kvQAAAAAAAAAAzckKvT16E7m0cKW2naxasgxpkToyDMk1AACAPwAAgD+zbdi9OFKbPw44cr5phwO/SdtIvq2yCr4AAAAAAAAAAM3cEztOCgE/Dg8CPnDImL4oYlk98kufPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,16 +60,16 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIXKeoUBXGMAWyUS/WMAXSUR0CcXKO5avA5dX2UKGgGR0BQ6ODnNgSfaAdLvWgIR0CcXWK2a2F4dX2UKGgGR0Byhusny/bkaAdL2mgIR0CcXlymALApdX2UKGgGR0Bx6/Fkxyn2aAdLz2gIR0CcXwYoAn2JdX2UKGgGR0BymueNDMNdaAdL1mgIR0CcYKfSx7iRdX2UKGgGR0BwlPBdld1MaAdL52gIR0CcYLm6oVEedX2UKGgGR0BxOUlsxfv4aAdL5GgIR0CcYb9iMHbAdX2UKGgGR0Bkpo9mpVCHaAdN6ANoCEdAnGT5rLyMDXV9lChoBkdAciSQtBfKIWgHS9poCEdAnGUqPjn3c3V9lChoBkdAcZcG8Empl2gHTQwBaAhHQJxmH3mFJxx1fZQoaAZHQHKcQ2ycCo1oB0vcaAhHQJxm1dIGyHF1fZQoaAZHQHEkX18LKFJoB0vuaAhHQJxnNxFRYRx1fZQoaAZHQHH3RceKba1oB00AAWgIR0CcaUgogFHKdX2UKGgGR0BwZlwMpgCwaAdNFAFoCEdAnGl/9tMwlHV9lChoBkdAcRxr9VFQVWgHS+9oCEdAnGpVL8Jla3V9lChoBkdAXk9w1ivxIGgHTegDaAhHQJxqferMkhR1fZQoaAZHQHK2+UpuuRtoB010AWgIR0CcaswC8vmHdX2UKGgGR0BwNNkEs8PnaAdL2mgIR0CcawwwCbMHdX2UKGgGR0BvnSfHxSYPaAdL22gIR0Cca+Ys/Y8MdX2UKGgGR0BvyDtAs053aAdL9WgIR0CcbA4wRGtqdX2UKGgGR0BxZqnNxEORaAdNKgFoCEdAnGwXSKFZgXV9lChoBkdAUPrXSSeRP2gHS8RoCEdAnG9EIcBEKHV9lChoBkdAcKFEfT1CgWgHS/NoCEdAnG+c8cMmW3V9lChoBkdAQB9HFxXGO2gHS9RoCEdAnHBQIdELIHV9lChoBkdAc0MRjz7MxGgHTRoBaAhHQJxyhRoAXEZ1fZQoaAZHQEQZsRg7YChoB0vZaAhHQJxzzkHUtqZ1fZQoaAZHQHDqfczqKP5oB01GAWgIR0Ccc87mMfihdX2UKGgGR0BwtdlvqC6IaAdL12gIR0CcdC0CA+Y/dX2UKGgGR0BuuzMaCL/CaAdNBQFoCEdAnHT+vIOpbXV9lChoBkdAcfg+l0o0AWgHS8hoCEdAnHT7ALy+YnV9lChoBkdAbwOlKsdT52gHS+poCEdAnHVBzeXRgXV9lChoBkdAchiGu9vjwWgHTQEBaAhHQJx1nvJA+px1fZQoaAZHQHIoxnWattBoB0vkaAhHQJx2E8HObAl1fZQoaAZHQHMLcGxD9floB00qAWgIR0CcdlM6ij+KdX2UKGgGR0BywysQumJnaAdL9GgIR0CcdpIRAbADdX2UKGgGR0BdxpML4N7TaAdN6ANoCEdAnHiVCw8nu3V9lChoBkdAcHb49X9zfmgHS9toCEdAnHjQIldC3XV9lChoBkdAckupDu0CzWgHS99oCEdAnHntiH6/I3V9lChoBkdAcLqqcVgx8GgHTQkBaAhHQJyc5ORDCxh1fZQoaAZHQHFOM6JZW7xoB0vfaAhHQJyeueGwiaB1fZQoaAZHQHCDsan7521oB0vzaAhHQJyfn5BTn7p1fZQoaAZHQHLKefEn9ehoB00OAWgIR0Ccn8f8/D+BdX2UKGgGR0Buc9Fc6eXiaAdL7GgIR0CcoH/smfGudX2UKGgGR0BxUNk7OmiyaAdNAQFoCEdAnKCYH9m6G3V9lChoBkdAcn5wob4rSWgHS+doCEdAnKCR7RfF73V9lChoBkdAcs6r+5vtMWgHS+RoCEdAnKDWYv38GnV9lChoBkdAcTtoo/iYLWgHS99oCEdAnKFE6DGtIXV9lChoBkdAcDPao/A0sWgHTQIBaAhHQJyiZ/SYw7F1fZQoaAZHQGUU/zJ6po9oB03oA2gIR0Cco2bsniNsdX2UKGgGR0BsaYWHk92YaAdL8GgIR0CcpHYR/ViGdX2UKGgGR0BxAKhJyyUtaAdL+GgIR0CcpIRU3n6mdX2UKGgGR0Bxu/mknCwbaAdL+mgIR0CcpeBQemvXdX2UKGgGR0BzFCG7BfrsaAdNeQFoCEdAnKX1lPJq7HV9lChoBkdAcNb0Ltu1nmgHS/RoCEdAnKaKH0se4nV9lChoBkdAc2MMW43FUGgHS+ZoCEdAnKev5xiobXV9lChoBkdAcHgiZfD1oWgHS9ZoCEdAnKf6KpDNQnV9lChoBkdAcTekCFK02WgHTQ4BaAhHQJyqFylvZRN1fZQoaAZHQHEO7Ms6JZZoB00LAWgIR0Ccqr9y925hdX2UKGgGR0Bzb5QMx46faAdNIQFoCEdAnKuzIV/MGHV9lChoBkdAcFah+OOsDGgHS/poCEdAnKwDKcNH6XV9lChoBkdAcn1sgdOqN2gHTR8BaAhHQJysa77Kq4p1fZQoaAZHQHNnr3wkPc1oB0vpaAhHQJysaUHIIWx1fZQoaAZHQHLIdxEORT1oB004AWgIR0CcrR8TSLIgdX2UKGgGR0BwjvFOwgTzaAdNSAFoCEdAnK2E078vVXV9lChoBkdAcKGeHi3ocWgHS+poCEdAnK29gBtDUnV9lChoBkdAcUSZ9NN8E2gHTQcBaAhHQJyuu3KB/Zx1fZQoaAZHQHBhPA44p+doB0v6aAhHQJywf+fh/Al1fZQoaAZHQHCxC5d4VypoB00RAWgIR0CcsLUfgaWHdX2UKGgGR0BxelpblijMaAdL52gIR0CcsT5vcafjdX2UKGgGR0BxWTHktEofaAdNJQFoCEdAnLFeqR2bG3V9lChoBkdAcPIKlYU342gHS/ZoCEdAnLGC/TLGJnV9lChoBkdAcZM4etCAtmgHTY8CaAhHQJyyXCqIacZ1fZQoaAZHQHEnftdAxBVoB0vkaAhHQJyzCwNb1RN1fZQoaAZHQHH9kKNQ0oBoB0vtaAhHQJy0ARQJokB1fZQoaAZHQHFJ7Jnxri5oB0vaaAhHQJy0McOskpt1fZQoaAZHQG+aqJMxoIxoB0vbaAhHQJy0yRV6u4h1fZQoaAZHQHDclHavicZoB00iAWgIR0Cctz9Pk7wKdX2UKGgGR0BwmQu9OARTaAdNGQFoCEdAnLc1qnFYMnV9lChoBkdAb7J5qM3qA2gHS/9oCEdAnLdhR64Ue3V9lChoBkdAckzNpdrwfGgHTQ4BaAhHQJy3vhrFfiR1fZQoaAZHQHGG2M4tHx1oB0v8aAhHQJy4Wnk1dgR1fZQoaAZHQHCgr5ylvZRoB0vaaAhHQJy4wQDmr811fZQoaAZHQHFMW65Gz8hoB0vcaAhHQJy52fDk2gp1fZQoaAZHQHPVkWEbo8poB0vZaAhHQJy6k5tFa0R1fZQoaAZHQHDo8WfseGRoB0v6aAhHQJy6vV9Wp611fZQoaAZHQHIx9n5BTn9oB00kAWgIR0Ccu9GmDUVjdX2UKGgGR0ByyFY4hllLaAdNHgFoCEdAnLw88YAKfHV9lChoBkdAcRavVEuxr2gHS/FoCEdAnLxEbLlmvnV9lChoBkdAcA3nCO3lS2gHS/FoCEdAnL0/TLGJenV9lChoBkdAcxxlyzXz2GgHS/toCEdAnL6Cyt3fRHV9lChoBkdAUTAf9xZMc2gHS79oCEdAnL68N6PbPHV9lChoBkdAcg+CeEqUeWgHTTUBaAhHQJzAKDCgsbx1fZQoaAZHQHDCqISDh99oB0vqaAhHQJzAR7kXDWN1fZQoaAZHQHGO0RnOB19oB0v8aAhHQJzBCsU7CBR1fZQoaAZHQG5piAUcn3NoB0vyaAhHQJzBFVOsT391fZQoaAZHQHFCCA+Y+jdoB0v+aAhHQJzCHOfNA1N1fZQoaAZHQHBGze40/GFoB00JAWgIR0CcwuZgG8mKdX2UKGgGR0ByD1orWiDeaAdL9GgIR0CcwzzFdcB2dX2UKGgGR0Bw1j8CPp6haAdL7WgIR0Ccw80cOskqdX2UKGgGR0ByYIy44Ia+aAdL+GgIR0CcxFu6mO2idWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
@@ -69,7 +84,7 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
@@ -79,21 +94,21 @@
79
  "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.98,
83
- "ent_coef": 0.01,
84
- "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
- ":serialized:": "gAWV/gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS9wYWlzYW4vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXi9ob21lL3BhaXNhbi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWV/gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS9wYWlzYW4vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXi9ob21lL3BhaXNhbi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79caa9956d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79caa9956dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79caa9956e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79caa9956ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79caa9956f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79caa9957010>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79caa99570a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79caa9957130>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79caa99571c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79caa9957250>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79caa99572e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79caa9957370>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79caaa0c0340>"
21
  },
22
  "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVdwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjApvcnRob19pbml0lIl1Lg==",
26
+ "net_arch": {
27
+ "pi": [
28
+ 256,
29
+ 256
30
+ ],
31
+ "vf": [
32
+ 256,
33
+ 256
34
+ ]
35
+ },
36
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
37
+ "ortho_init": false
38
+ },
39
  "num_timesteps": 1015808,
40
  "_total_timesteps": 1000000,
41
  "_num_timesteps_at_start": 0,
42
  "seed": null,
43
  "action_noise": null,
44
+ "start_time": 1698715967381656574,
45
+ "learning_rate": 2.9634285137411235e-05,
46
  "tensorboard_log": null,
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYm/T02CLk+cBpavd7Byr6dQmA92oyYvAAAAAAAAAAAmpmwu6+QpT+GkSi9e4IXv2qkfLyyW0y9AAAAAAAAAAAmYyI+yPLhPdYMh75HY+S90zONvPWNpjwAAAAAAAAAAM3ymDw9W0e7934ovfpDHT3W44k8Js0DvgAAgD8AAIA/M59kPGNnkT/vMzw9kt9Av4aBnzz4bgy7AAAAAAAAAADmIlI9XCcYun774zqTfvA1FhYuO2niA7oAAIA/AACAP4j9ib4MdCk/ugeUvazpEb8MGOK+8R8kPgAAAAAAAAAAs7XYPU8SFT6mrj873/tKvvnLAD7mAwS+AAAAAAAAAAAAGTU+2d4iPnUAE77XJJW+qedfvYZC6z0AAAAAAAAAAM12Ur3oHaY/xK8Hv89lKr8Stg+8wPI3vgAAAAAAAAAAjQSnvcMBQLod3yezQ22Wr/Ml0rpErskzAACAPwAAgD+NcbC9rk2HuoH0vzaC/BEzAclJOPA54bUAAIA/AACAP5ohBrt4W8Y9G/Mvvir+T7616Ie9Mv1EPAAAAAAAAAAAs7HmPYrZDT43RSK9EUSRvghizDzz3G49AAAAAAAAAABAOfo9/qqHPxr8gD5TIzK/GAIVPqiSdL0AAAAAAAAAAGZCd73kngc+eknWvVCWJ77Z6ka9Ci4IvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
60
  "_stats_window_size": 100,
61
  "ep_info_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIw93OfNA2MAWyUTQ4BjAF0lEdAuIKfoV2zOXV9lChoBkdAcitX18LKFWgHS9NoCEdAuIKvO2RaHXV9lChoBkdAcYUAvtdAxGgHS7poCEdAuILpqagElnV9lChoBkdAc4mXsPatcWgHS9RoCEdAuIMSk690zXV9lChoBkdAcO3t4iX6ZmgHS8JoCEdAuIMiF49ovnV9lChoBkdAcJSBLwnYx2gHTTMBaAhHQLiDVxJNCZ51fZQoaAZHQHCBGQOnVG1oB0v6aAhHQLiDWUIcBEN1fZQoaAZHQFVmsA/9pAVoB0uKaAhHQLiDZKq4pc51fZQoaAZHQHLsrzTWoWJoB0vSaAhHQLiDahYNiH91fZQoaAZHQHLgu9SMtK9oB0v0aAhHQLiDcVDa4+d1fZQoaAZHQG7QfW+XZ5BoB0vBaAhHQLiDgMZgogF1fZQoaAZHQG7CKKpDNQloB0vLaAhHQLiDjGXXyy51fZQoaAZHQHFMfX05EMNoB0u7aAhHQLiEA1s+FDh1fZQoaAZHQEOuaNMoMKFoB0tnaAhHQLiEIgr6LwZ1fZQoaAZHQHPAUypJf6ZoB0vLaAhHQLiEIiG34Kx1fZQoaAZHQG2kRTjvNNdoB0vOaAhHQLiEdlKK5091fZQoaAZHQHJG8i0OVgRoB0vPaAhHQLiEsoB7u2J1fZQoaAZHQHBi5wGW2PVoB0vKaAhHQLiE33yI55t1fZQoaAZHQHJV4jrzGxVoB0vwaAhHQLiE7U4rBj51fZQoaAZHQHDNQmVqveRoB0vOaAhHQLiE9hP0qYt1fZQoaAZHQHJsjQNTcZdoB00yAWgIR0C4hQ/HYHxCdX2UKGgGR0BvZLxXnyNGaAdL0mgIR0C4hSNSl3yJdX2UKGgGR0Bk5v/rB0p3aAdN6ANoCEdAuIUjBN21UnV9lChoBkdAcRnSbH6uXGgHS+poCEdAuIUotdzGP3V9lChoBkdAceq163RXwWgHS9BoCEdAuIUtiBoVVXV9lChoBkdAbaWCtA9mpWgHTQwBaAhHQLiFgwj+rEN1fZQoaAZHQHKEUmplz2hoB0u6aAhHQLiFo+6RQrN1fZQoaAZHQHBui619fC1oB0vVaAhHQLiFuijcmBx1fZQoaAZHQGAVhy0a6z5oB03oA2gIR0C4hddKqXF+dX2UKGgGR0BtcUYht+CsaAdL12gIR0C4hdzIzWPMdX2UKGgGR0Bw08YpDu0DaAdLvWgIR0C4jEOj2zv7dX2UKGgGR0Bw0q6NEPUbaAdLv2gIR0C4jN0SVW0adX2UKGgGR0BzUjsw+MZQaAdLwmgIR0C4jPJjc2zfdX2UKGgGR0Bx0S2d/axpaAdL7GgIR0C4jVbD/EOzdX2UKGgGR0BxxjCj1wo9aAdL1WgIR0C4jWyNGViXdX2UKGgGR0BwX0+r2g3+aAdNCQFoCEdAuI1yxmkFfXV9lChoBkdAc2TdUbT+emgHS9hoCEdAuI1+IsRQJ3V9lChoBkdAcPg8rZrYXmgHS99oCEdAuI2I9aEBbXV9lChoBkdAccGQmeDnNmgHS+1oCEdAuI27q8lHBnV9lChoBkdAcReb+cYqG2gHTRIBaAhHQLiN+yPuG9J1fZQoaAZHQHFGQZbY9PloB0viaAhHQLiOFrTH80l1fZQoaAZHQHELCxZ+x4ZoB0u+aAhHQLiOKS1maph1fZQoaAZHQHEUQezUqhFoB0vhaAhHQLiOQe2uxKR1fZQoaAZHQHES9ovi97FoB0vfaAhHQLiOWqjJuEV1fZQoaAZHQHCcMjFAE+xoB0v2aAhHQLiOxmMfigl1fZQoaAZHQHFTuARTS9doB0vyaAhHQLiO5DGcWj51fZQoaAZHQHCG7yUcGTtoB0vKaAhHQLiPEKSxJNF1fZQoaAZHQHJkBeXzDoBoB0vbaAhHQLiPVc6vJRx1fZQoaAZHQG8EWwFC9h9oB0vKaAhHQLiPcwnH/951fZQoaAZHQHFkCROk+HJoB0vIaAhHQLiPgRDTjNp1fZQoaAZHQHHOiSaEzwdoB0vHaAhHQLiPjGN70Ft1fZQoaAZHQG5w5xzaK1poB0vHaAhHQLiPrYzBRAN1fZQoaAZHQHD6mOhkAghoB00AAWgIR0C4j+VfmcOLdX2UKGgGR0BxfH/m1YyPaAdNCAFoCEdAuI//okiUxHV9lChoBkdAcUL9d/rjYWgHS8poCEdAuJAhefI0ZXV9lChoBkdAciD+5e7cwmgHS/NoCEdAuJA/l8w6AHV9lChoBkdAcwCsKb8WK2gHS+5oCEdAuJBUIUrTY3V9lChoBkdAcVyRceKba2gHS/hoCEdAuJBWUW2w3nV9lChoBkdAc5Rhz/6wdWgHTRUBaAhHQLiQagoPTXt1fZQoaAZHQFcWDKYAsCloB03oA2gIR0C4kHjVUdaMdX2UKGgGR0BzfIomXw9aaAdLvGgIR0C4kIFvuPV/dX2UKGgGR0BxITrB0p3HaAdL82gIR0C4kKyAQQMAdX2UKGgGR0ByF+VrylN2aAdNFgFoCEdAuJD4wL3K0XV9lChoBkdAcOBL61stTWgHS/hoCEdAuJEKc0+C9XV9lChoBkdAczbc0tRNy2gHS89oCEdAuJEWBAfMfXV9lChoBkdAcjAwfhddFGgHTQUBaAhHQLiRN0bcXWR1fZQoaAZHQHGlV1bJOnFoB0v9aAhHQLiRQfcvduZ1fZQoaAZHQHDb+pS75EdoB0vDaAhHQLiRZQxvegt1fZQoaAZHQHH08an7521oB0vvaAhHQLiReAVfu1F1fZQoaAZHQHHvcvIwM6RoB0vraAhHQLiRhlLvkR11fZQoaAZHQHFWpZ8rqdJoB0vDaAhHQLiRkZIg/1R1fZQoaAZHQHHY3eizsyBoB006AWgIR0C4kZgf2bobdX2UKGgGR0ByrIevIOpbaAdLymgIR0C4kZoXj2i+dX2UKGgGR0Bwa8zBRAKOaAdLwWgIR0C4kbUeuFHsdX2UKGgGR0BzXhWKdhAoaAdL0GgIR0C4kcPZmI0qdX2UKGgGR0ByPrQID5j6aAdL/WgIR0C4kdLw4KhMdX2UKGgGR0BvryebutwKaAdLvGgIR0C4kdPp2U0OdX2UKGgGR0BylWCHymQ9aAdL9GgIR0C4keYFeOXFdX2UKGgGR0ByfMTg2qDLaAdLz2gIR0C4kip3cHnmdX2UKGgGR0BzOVYT0xubaAdLzmgIR0C4kkVpGnXNdX2UKGgGR0BvwxH7P6bfaAdL7WgIR0C4kmy+QEIPdX2UKGgGR0BxXWpgkTpQaAdL02gIR0C4knmQGOdYdX2UKGgGR0BxbHQ1JlJ6aAdL22gIR0C4knzJZGKAdX2UKGgGR0ByjKsmv4dqaAdLzGgIR0C4kpDIRywOdX2UKGgGR0Bxg+WmgrYoaAdLymgIR0C4kp/CEYfodX2UKGgGR0By5r6guh9LaAdLv2gIR0C4kq9iYsundX2UKGgGR0Bxugf4h2W6aAdLz2gIR0C4ksRzeXRgdX2UKGgGR0BzTHywwCbMaAdLvGgIR0C4ks30PH1fdX2UKGgGR0BwqQWpIczZaAdNAwFoCEdAuJMNVlwtKHV9lChoBkdAcZthNucc2mgHS9toCEdAuJMQXJo0ynV9lChoBkdAbw37dBSk02gHTQMBaAhHQLiTIre67NB1fZQoaAZHQHGJY6nzg/FoB0vqaAhHQLiTOeDFqBV1fZQoaAZHQHMllLJ0W/JoB0vsaAhHQLiTPqt5le51fZQoaAZHQG9E8SXdCVtoB0voaAhHQLiTTth/iHZ1fZQoaAZHQHOce5SWJJpoB0vHaAhHQLiTaEnssxx1fZQoaAZHQHN30DhcZ+BoB0vBaAhHQLiTmvllsgx1fZQoaAZHQHNUIDPnjhloB0vFaAhHQLiTr68QI2R1fZQoaAZHQGzUuuzQeFNoB00BAWgIR0C4k9sBhhH9dX2UKGgGR0ByR0/TspocaAdL0mgIR0C4k+l6Z6UrdX2UKGgGR0BzIHmzSkTIaAdLvWgIR0C4k+o371qWdWUu"
64
  },
65
  "ep_success_buffer": {
66
  ":type:": "<class 'collections.deque'>",
67
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
68
  },
69
+ "_n_updates": 1240,
70
  "observation_space": {
71
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
  "dtype": "float32",
74
  "bounded_below": "[ True True True True True True True True]",
75
  "bounded_above": "[ True True True True True True True True]",
 
84
  },
85
  "action_space": {
86
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
88
  "n": "4",
89
  "start": "0",
90
  "_shape": [],
 
94
  "n_envs": 16,
95
  "n_steps": 1024,
96
  "gamma": 0.999,
97
+ "gae_lambda": 0.95,
98
+ "ent_coef": 2.231474738148853e-08,
99
+ "vf_coef": 0.8932129855308106,
100
  "max_grad_norm": 0.5,
101
+ "batch_size": 256,
102
+ "n_epochs": 20,
103
  "clip_range": {
104
  ":type:": "<class 'function'>",
105
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/TMzMzMzMzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
106
  },
107
  "clip_range_vf": null,
108
  "normalize_advantage": true,
109
  "target_kl": null,
110
  "lr_schedule": {
111
  ":type:": "<class 'function'>",
112
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/EuSRbjx8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
113
  }
114
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f1cd665058e4d353221e021569c36dbd6b9c9ecc95ddd5e212a4e89ef4f7e644
3
- size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:335b7be8b34635e989131735f778e2240403975f25574ded170ac2a6ec700889
3
+ size 1109802
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:368e9ed9e8d1ced9f683dd1f5cf3a016de2108e1b9f44b8a0587844e81ea1af9
3
- size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67df324251ad41b885dd8f60a8f0a0285815f6c6b9f61c25e80b65206084d656
3
+ size 554482
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,8 +1,9 @@
1
- - OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.27 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
2
- - Python: 3.11.5
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.1.0+cu121
5
  - GPU Enabled: True
6
- - Numpy: 1.26.0
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
  - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 284.6811092265547, "std_reward": 15.739918156144771, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-08T00:31:32.827336"}
 
1
+ {"mean_reward": 267.94467068826384, "std_reward": 23.54338225002002, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-31T01:54:52.230655"}