Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +43 -28
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +5 -4
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 267.94 +/- 23.54
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3753957880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3753957920>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37539579c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3753957a60>", "_build": "<function ActorCriticPolicy._build at 0x7f3753957b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f3753957ba0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3753957c40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3753957ce0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3753957d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3753957e20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3753957ec0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3753957f60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f375394b340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696728597050868400, "learning_rate": 0.0006, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOfeb1Mv4E/kCGyvB+AF7/Sf/e9idoDPgAAAAAAAAAAuvlfPiA42j41bgC/i+7NvjEclD12dbS+AAAAAAAAAADNohC8cQkou5E6wbvLZI48+R4xvEjFdT0AAIA/AACAPxO2Kb7ziDk/DqqZvBBbHb+CpZC+6MsfPgAAAAAAAAAArbo+PjJajz9zkwU/q9wKv35lfD669kE+AAAAAAAAAAAaz0w9h6+yP73eFj8NOjS+/SGHuli5ED4AAAAAAAAAAM1kubv9HQw8pUpguwo2mb42ZnM9mSKFOwAAAAAAAAAA2mlXPtgPzj4OXpS+nYOtvpFEfz4y3l++AAAAAAAAAACaFPc8tNMjPu+Bij0KtHO+aAMCPpRZrD0AAAAAAAAAAJpAXD1wrTQ/QObrPdIG8r6c5uU9VwmcPQAAAAAAAAAAmqWDO3iVoDxLHHe+nvmUvplB+L2qbJy8AAAAAAAAAAAzGUE+qXO6PjVFdb6kjOu+lvrXPb+FC74AAAAAAAAAAPOVsr2Feb0/CisGv1VPmDzbiai9mhCivgAAAAAAAAAAukBGvkJW7D6ytYg+B+/pvt5RIr5Mzo0+AAAAAAAAAABm1yo9OEHVPTTxErwJhoq+kRugPfX21bwAAAAAAAAAAJroWT3DPRa6aJiGuZHrljMU/8G7HaKdOAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGrN5t3wCuMAWyUS9iMAXSUR0DKo2cBIWgwdX2UKGgGR0BQoceCCjDbaAdLkGgIR0DKo5JmVZ9vdX2UKGgGR0Bt16LuQZGbaAdL42gIR0DKo80qJ/G3dX2UKGgGR0Btgrg0j1PFaAdLxGgIR0DKo9HarWAgdX2UKGgGR0Bzkg3S8an8aAdL0WgIR0DKpCkNjLB9dX2UKGgGR0Bw+6zmfXf7aAdL22gIR0DKpGew7kn1dX2UKGgGR0BzAEM6RyOraAdLzmgIR0DKpJlAzHjqdX2UKGgGR0Bxvro6jnFHaAdLwmgIR0DKpNA6p5u7dX2UKGgGR0Bwo+CL/CIlaAdLz2gIR0DKpNhIOH32dX2UKGgGR0BvSd5hScbzaAdLxWgIR0DKpQXgtOEedX2UKGgGR0ByuMsPJ7swaAdLxGgIR0DKpSL/CIk7dX2UKGgGR0BvJGMAFPi2aAdL82gIR0DKpSrfm9xqdX2UKGgGR0BwPyHGjsUqaAdL/WgIR0DKpTmHUMG5dX2UKGgGR0By/jo6jnFHaAdL/WgIR0DKpVO4wyqNdX2UKGgGR0BzaQcFQl8gaAdL5WgIR0DKpVfBtUGWdX2UKGgGR0Bw+Yka/ATJaAdL5GgIR0DKpXjp/wy7dX2UKGgGR0Bvl0TewcHXaAdLw2gIR0DKpYl/Ue+3dX2UKGgGR0BwrSk1uR9xaAdLzmgIR0DKpa7a7EpBdX2UKGgGR0BU+dMwlByCaAdN6ANoCEdAyqXCZydWhnV9lChoBkdAcXYlq8DjimgHS/5oCEdAyqXcPxQSBnV9lChoBkdATxbNIK+i8GgHS4hoCEdAyqXu2Hck+3V9lChoBkdAcaUVs1sLv2gHS81oCEdAyqX0CWeHz3V9lChoBkdAcHYuBczIm2gHS9ZoCEdAyqY61gH/tXV9lChoBkdAUz7X05EMLGgHS5VoCEdAyqZmkeIVM3V9lChoBkdAcm0u5BkZrGgHS91oCEdAyqZz1PFefXV9lChoBkdAccyncL0BfmgHS8ZoCEdAyt4lf+CK8HV9lChoBkdAckN1v2oNu2gHS99oCEdAyt5Do24usnV9lChoBkdAcY6fhMrVfGgHS/1oCEdAyt5eIhyKenV9lChoBkdAbzyvduYQa2gHS/loCEdAyt6SksSTQnV9lChoBkdAclcPsAvL5mgHS+5oCEdAyt6UHKOktXV9lChoBkdAcYhn889wFWgHS9RoCEdAyt6ZyqdYn3V9lChoBkdAchecj7hvSGgHS/FoCEdAyt6norWiDnV9lChoBkdAb/3U70WdmWgHS9RoCEdAyt7SlzltCXV9lChoBkdAcfDTefqX4WgHS9doCEdAyt7/YjB2wHV9lChoBkdAb4XDa4+bE2gHS9poCEdAyt9hjRUm2XV9lChoBkdAcJZOlO45LmgHS+1oCEdAyt9thb4agnV9lChoBkdAcZLzqKP4mGgHS+VoCEdAyt991GLDRHV9lChoBkdAcw3/X5FgD2gHS69oCEdAyt+o2KEWZnV9lChoBkdAcKx9Gqgh82gHS9xoCEdAyt/fAEdNnHV9lChoBkdAcgaVdonKGWgHS6xoCEdAyuAVgy/KyXV9lChoBkdAcI7GCI1tO2gHS+1oCEdAyuA4txuKoHV9lChoBkdAcjh/Z/Tb4GgHS9JoCEdAyuA+Z7Xxv3V9lChoBkdAcoZwFTvRZ2gHS95oCEdAyuBxkJa7mXV9lChoBkdAcW4B3zMA3mgHS8BoCEdAyuB6Co0hvHV9lChoBkdAced/G2kSEmgHS8JoCEdAyuB7UQTVUnV9lChoBkdAcJhx8UmD2GgHS89oCEdAyuCh7kXDWXV9lChoBkdAcWJHktEofGgHS8ZoCEdAyuDNMewLVnV9lChoBkdAcVo3FDOTq2gHS9hoCEdAyuDXqagElnV9lChoBkdAcJXXN1QqJGgHS8FoCEdAyuEYWOZLI3V9lChoBkdAcWt5Jsfq5mgHTQMBaAhHQMrhH4tg8bJ1fZQoaAZHwEv748EFGG5oB0txaAhHQMrhJFXq7iB1fZQoaAZHQHHDiROk+HJoB0vHaAhHQMrhKePRzBB1fZQoaAZHQHG6k1uR9w5oB03gAWgIR0DK4TaRr8BNdX2UKGgGR0Bx8fLcKw6iaAdL8WgIR0DK4ZOqJdjYdX2UKGgGR0By1lWNm16WaAdL4mgIR0DK4a4X0oSddX2UKGgGR0BxlDoSteUqaAdL+WgIR0DK4a/1lGwzdX2UKGgGR0BzeLDye7L/aAdL0GgIR0DK4ceiL2pRdX2UKGgGR0BzVESrYGt7aAdLyWgIR0DK4duTTvy9dX2UKGgGR0BwL7987ZFoaAdL1GgIR0DK4iNUVBUrdX2UKGgGR0BvffndO6/ZaAdL1GgIR0DK4i3UYsNEdX2UKGgGR0Bv2xpg1FYuaAdL5mgIR0DK4km+oLofdX2UKGgGR0BwnFw4sEq2aAdL1WgIR0DK4k1cIJJHdX2UKGgGR0BxGdnQID5kaAdLzWgIR0DK4o9sYVIqdX2UKGgGR0Bw9+cI7eVLaAdL2mgIR0DK4ptcW0qpdX2UKGgGR0Bw2kihWYF8aAdLzWgIR0DK4rRqoIfKdX2UKGgGR0ByomoKlYU4aAdL2WgIR0DK4uRM10kodX2UKGgGR0BzgRkDp1RtaAdL02gIR0DK4uxBPbfxdX2UKGgGR0BxL6EPDpC8aAdL4GgIR0DK4vApnYg8dX2UKGgGR0Bw/sUj9n9OaAdLvGgIR0DK4z0I3R5UdX2UKGgGR0Bzq5gPVd5ZaAdLxGgIR0DK40bcKw6idX2UKGgGR0Bw04ANoakzaAdL4GgIR0DK41pOLzf8dX2UKGgGR0BzSKpjtoi+aAdL4mgIR0DK459/nW8RdX2UKGgGR0BuPxArxy4naAdL6mgIR0DK49b2FnIydX2UKGgGR0BwXBVFQVKxaAdLymgIR0DK5CFUn5SFdX2UKGgGR0ByMQLKFIuoaAdLtGgIR0DK5Dg5vLowdX2UKGgGR0ByG1B8hLXdaAdL+GgIR0DK5GGzQeFMdX2UKGgGR0BxtQOby6MBaAdL8GgIR0DK5GDtLL6ldX2UKGgGR0BxorKzRhMKaAdLwGgIR0DK5IXvQWvbdX2UKGgGR0ByvM+IMz/IaAdL9GgIR0DK5IqkTHsDdX2UKGgGR0BvBiHuZ1FIaAdLvmgIR0DK5KHb212JdX2UKGgGR0Bt5iGcnVoYaAdL4mgIR0DK5KZuIhyKdX2UKGgGR0BzWoYfnwG4aAdLvGgIR0DK5Kit5le4dX2UKGgGR0BxMDwAlv61aAdL22gIR0DK5OTc/MW5dX2UKGgGR0Buk1sYVIqcaAdLxGgIR0DK5QcPOIIodX2UKGgGR0BxjFYbKifyaAdL3WgIR0DK5S4PwuuidX2UKGgGR0BvL/5DZ13daAdL1mgIR0DK5VjuUliSdX2UKGgGR0BzX+rQw9JSaAdL8mgIR0DK5e4OFxn4dX2UKGgGR0By2NEVnEl3aAdL52gIR0DK5fLyJ9ApdX2UKGgGR0BzUQIUrTYvaAdL22gIR0DK5hUgU1yedX2UKGgGR0Bzp5Mtbs4UaAdL1WgIR0DK5hjm6oVEdX2UKGgGR0ByBkVUMoc8aAdLx2gIR0DK5j1Oj7AMdX2UKGgGR0BwZ/yup0fYaAdL52gIR0DK5lEvZh8ZdX2UKGgGR0BzCz+S8rZraAdL12gIR0DK5mbIgeRxdX2UKGgGR0By54DyOJcgaAdL0WgIR0DK5or5Ec81dX2UKGgGR0By6jvhIe5naAdNAgFoCEdAyuax/c32mHV9lChoBkdAc9I+8XenAWgHS95oCEdAyua6l1r6+HV9lChoBkdAc0ozSkTHsGgHS+ZoCEdAyubEVMVUM3V9lChoBkdAczGARkEs8WgHS99oCEdAyub7wWnCO3V9lChoBkdAcOuMl1KXfWgHS8doCEdAyuckKMvRJHV9lChoBkdAcaekbgjyF2gHS+FoCEdAyucwbCrLhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS9wYWlzYW4vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXi9ob21lL3BhaXNhbi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS9wYWlzYW4vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXi9ob21lL3BhaXNhbi9taW5pY29uZGEzL2VudnMvcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9DqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.27 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.11.5", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79caa9956d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79caa9956dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79caa9956e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79caa9956ef0>", "_build": "<function ActorCriticPolicy._build at 0x79caa9956f80>", "forward": "<function ActorCriticPolicy.forward at 0x79caa9957010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79caa99570a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79caa9957130>", "_predict": "<function ActorCriticPolicy._predict at 0x79caa99571c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79caa9957250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79caa99572e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79caa9957370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79caaa0c0340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVdwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjApvcnRob19pbml0lIl1Lg==", "net_arch": {"pi": [256, 256], "vf": [256, 256]}, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "ortho_init": false}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698715967381656574, "learning_rate": 2.9634285137411235e-05, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYm/T02CLk+cBpavd7Byr6dQmA92oyYvAAAAAAAAAAAmpmwu6+QpT+GkSi9e4IXv2qkfLyyW0y9AAAAAAAAAAAmYyI+yPLhPdYMh75HY+S90zONvPWNpjwAAAAAAAAAAM3ymDw9W0e7934ovfpDHT3W44k8Js0DvgAAgD8AAIA/M59kPGNnkT/vMzw9kt9Av4aBnzz4bgy7AAAAAAAAAADmIlI9XCcYun774zqTfvA1FhYuO2niA7oAAIA/AACAP4j9ib4MdCk/ugeUvazpEb8MGOK+8R8kPgAAAAAAAAAAs7XYPU8SFT6mrj873/tKvvnLAD7mAwS+AAAAAAAAAAAAGTU+2d4iPnUAE77XJJW+qedfvYZC6z0AAAAAAAAAAM12Ur3oHaY/xK8Hv89lKr8Stg+8wPI3vgAAAAAAAAAAjQSnvcMBQLod3yezQ22Wr/Ml0rpErskzAACAPwAAgD+NcbC9rk2HuoH0vzaC/BEzAclJOPA54bUAAIA/AACAP5ohBrt4W8Y9G/Mvvir+T7616Ie9Mv1EPAAAAAAAAAAAs7HmPYrZDT43RSK9EUSRvghizDzz3G49AAAAAAAAAABAOfo9/qqHPxr8gD5TIzK/GAIVPqiSdL0AAAAAAAAAAGZCd73kngc+eknWvVCWJ77Z6ka9Ci4IvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIw93OfNA2MAWyUTQ4BjAF0lEdAuIKfoV2zOXV9lChoBkdAcitX18LKFWgHS9NoCEdAuIKvO2RaHXV9lChoBkdAcYUAvtdAxGgHS7poCEdAuILpqagElnV9lChoBkdAc4mXsPatcWgHS9RoCEdAuIMSk690zXV9lChoBkdAcO3t4iX6ZmgHS8JoCEdAuIMiF49ovnV9lChoBkdAcJSBLwnYx2gHTTMBaAhHQLiDVxJNCZ51fZQoaAZHQHCBGQOnVG1oB0v6aAhHQLiDWUIcBEN1fZQoaAZHQFVmsA/9pAVoB0uKaAhHQLiDZKq4pc51fZQoaAZHQHLsrzTWoWJoB0vSaAhHQLiDahYNiH91fZQoaAZHQHLgu9SMtK9oB0v0aAhHQLiDcVDa4+d1fZQoaAZHQG7QfW+XZ5BoB0vBaAhHQLiDgMZgogF1fZQoaAZHQG7CKKpDNQloB0vLaAhHQLiDjGXXyy51fZQoaAZHQHFMfX05EMNoB0u7aAhHQLiEA1s+FDh1fZQoaAZHQEOuaNMoMKFoB0tnaAhHQLiEIgr6LwZ1fZQoaAZHQHPAUypJf6ZoB0vLaAhHQLiEIiG34Kx1fZQoaAZHQG2kRTjvNNdoB0vOaAhHQLiEdlKK5091fZQoaAZHQHJG8i0OVgRoB0vPaAhHQLiEsoB7u2J1fZQoaAZHQHBi5wGW2PVoB0vKaAhHQLiE33yI55t1fZQoaAZHQHJV4jrzGxVoB0vwaAhHQLiE7U4rBj51fZQoaAZHQHDNQmVqveRoB0vOaAhHQLiE9hP0qYt1fZQoaAZHQHJsjQNTcZdoB00yAWgIR0C4hQ/HYHxCdX2UKGgGR0BvZLxXnyNGaAdL0mgIR0C4hSNSl3yJdX2UKGgGR0Bk5v/rB0p3aAdN6ANoCEdAuIUjBN21UnV9lChoBkdAcRnSbH6uXGgHS+poCEdAuIUotdzGP3V9lChoBkdAceq163RXwWgHS9BoCEdAuIUtiBoVVXV9lChoBkdAbaWCtA9mpWgHTQwBaAhHQLiFgwj+rEN1fZQoaAZHQHKEUmplz2hoB0u6aAhHQLiFo+6RQrN1fZQoaAZHQHBui619fC1oB0vVaAhHQLiFuijcmBx1fZQoaAZHQGAVhy0a6z5oB03oA2gIR0C4hddKqXF+dX2UKGgGR0BtcUYht+CsaAdL12gIR0C4hdzIzWPMdX2UKGgGR0Bw08YpDu0DaAdLvWgIR0C4jEOj2zv7dX2UKGgGR0Bw0q6NEPUbaAdLv2gIR0C4jN0SVW0adX2UKGgGR0BzUjsw+MZQaAdLwmgIR0C4jPJjc2zfdX2UKGgGR0Bx0S2d/axpaAdL7GgIR0C4jVbD/EOzdX2UKGgGR0BxxjCj1wo9aAdL1WgIR0C4jWyNGViXdX2UKGgGR0BwX0+r2g3+aAdNCQFoCEdAuI1yxmkFfXV9lChoBkdAc2TdUbT+emgHS9hoCEdAuI1+IsRQJ3V9lChoBkdAcPg8rZrYXmgHS99oCEdAuI2I9aEBbXV9lChoBkdAccGQmeDnNmgHS+1oCEdAuI27q8lHBnV9lChoBkdAcReb+cYqG2gHTRIBaAhHQLiN+yPuG9J1fZQoaAZHQHFGQZbY9PloB0viaAhHQLiOFrTH80l1fZQoaAZHQHELCxZ+x4ZoB0u+aAhHQLiOKS1maph1fZQoaAZHQHEUQezUqhFoB0vhaAhHQLiOQe2uxKR1fZQoaAZHQHES9ovi97FoB0vfaAhHQLiOWqjJuEV1fZQoaAZHQHCcMjFAE+xoB0v2aAhHQLiOxmMfigl1fZQoaAZHQHFTuARTS9doB0vyaAhHQLiO5DGcWj51fZQoaAZHQHCG7yUcGTtoB0vKaAhHQLiPEKSxJNF1fZQoaAZHQHJkBeXzDoBoB0vbaAhHQLiPVc6vJRx1fZQoaAZHQG8EWwFC9h9oB0vKaAhHQLiPcwnH/951fZQoaAZHQHFkCROk+HJoB0vIaAhHQLiPgRDTjNp1fZQoaAZHQHHOiSaEzwdoB0vHaAhHQLiPjGN70Ft1fZQoaAZHQG5w5xzaK1poB0vHaAhHQLiPrYzBRAN1fZQoaAZHQHD6mOhkAghoB00AAWgIR0C4j+VfmcOLdX2UKGgGR0BxfH/m1YyPaAdNCAFoCEdAuI//okiUxHV9lChoBkdAcUL9d/rjYWgHS8poCEdAuJAhefI0ZXV9lChoBkdAciD+5e7cwmgHS/NoCEdAuJA/l8w6AHV9lChoBkdAcwCsKb8WK2gHS+5oCEdAuJBUIUrTY3V9lChoBkdAcVyRceKba2gHS/hoCEdAuJBWUW2w3nV9lChoBkdAc5Rhz/6wdWgHTRUBaAhHQLiQagoPTXt1fZQoaAZHQFcWDKYAsCloB03oA2gIR0C4kHjVUdaMdX2UKGgGR0BzfIomXw9aaAdLvGgIR0C4kIFvuPV/dX2UKGgGR0BxITrB0p3HaAdL82gIR0C4kKyAQQMAdX2UKGgGR0ByF+VrylN2aAdNFgFoCEdAuJD4wL3K0XV9lChoBkdAcOBL61stTWgHS/hoCEdAuJEKc0+C9XV9lChoBkdAczbc0tRNy2gHS89oCEdAuJEWBAfMfXV9lChoBkdAcjAwfhddFGgHTQUBaAhHQLiRN0bcXWR1fZQoaAZHQHGlV1bJOnFoB0v9aAhHQLiRQfcvduZ1fZQoaAZHQHDb+pS75EdoB0vDaAhHQLiRZQxvegt1fZQoaAZHQHH08an7521oB0vvaAhHQLiReAVfu1F1fZQoaAZHQHHvcvIwM6RoB0vraAhHQLiRhlLvkR11fZQoaAZHQHFWpZ8rqdJoB0vDaAhHQLiRkZIg/1R1fZQoaAZHQHHY3eizsyBoB006AWgIR0C4kZgf2bobdX2UKGgGR0ByrIevIOpbaAdLymgIR0C4kZoXj2i+dX2UKGgGR0Bwa8zBRAKOaAdLwWgIR0C4kbUeuFHsdX2UKGgGR0BzXhWKdhAoaAdL0GgIR0C4kcPZmI0qdX2UKGgGR0ByPrQID5j6aAdL/WgIR0C4kdLw4KhMdX2UKGgGR0BvryebutwKaAdLvGgIR0C4kdPp2U0OdX2UKGgGR0BylWCHymQ9aAdL9GgIR0C4keYFeOXFdX2UKGgGR0ByfMTg2qDLaAdLz2gIR0C4kip3cHnmdX2UKGgGR0BzOVYT0xubaAdLzmgIR0C4kkVpGnXNdX2UKGgGR0BvwxH7P6bfaAdL7WgIR0C4kmy+QEIPdX2UKGgGR0BxXWpgkTpQaAdL02gIR0C4knmQGOdYdX2UKGgGR0BxbHQ1JlJ6aAdL22gIR0C4knzJZGKAdX2UKGgGR0ByjKsmv4dqaAdLzGgIR0C4kpDIRywOdX2UKGgGR0Bxg+WmgrYoaAdLymgIR0C4kp/CEYfodX2UKGgGR0By5r6guh9LaAdLv2gIR0C4kq9iYsundX2UKGgGR0Bxugf4h2W6aAdLz2gIR0C4ksRzeXRgdX2UKGgGR0BzTHywwCbMaAdLvGgIR0C4ks30PH1fdX2UKGgGR0BwqQWpIczZaAdNAwFoCEdAuJMNVlwtKHV9lChoBkdAcZthNucc2mgHS9toCEdAuJMQXJo0ynV9lChoBkdAbw37dBSk02gHTQMBaAhHQLiTIre67NB1fZQoaAZHQHGJY6nzg/FoB0vqaAhHQLiTOeDFqBV1fZQoaAZHQHMllLJ0W/JoB0vsaAhHQLiTPqt5le51fZQoaAZHQG9E8SXdCVtoB0voaAhHQLiTTth/iHZ1fZQoaAZHQHOce5SWJJpoB0vHaAhHQLiTaEnssxx1fZQoaAZHQHN30DhcZ+BoB0vBaAhHQLiTmvllsgx1fZQoaAZHQHNUIDPnjhloB0vFaAhHQLiTr68QI2R1fZQoaAZHQGzUuuzQeFNoB00BAWgIR0C4k9sBhhH9dX2UKGgGR0ByR0/TspocaAdL0mgIR0C4k+l6Z6UrdX2UKGgGR0BzIHmzSkTIaAdLvWgIR0C4k+o371qWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 2.231474738148853e-08, "vf_coef": 0.8932129855308106, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/TMzMzMzMzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/EuSRbjx8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6355c38b70e2411a7e6239e2cf49dd7efb4cc43692684ce862d660a4a6efca26
|
3 |
+
size 1680685
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,49 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
-
"policy_kwargs": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"num_timesteps": 1015808,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate":
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,16 +60,16 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -79,21 +94,21 @@
|
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef":
|
84 |
-
"vf_coef": 0.
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79caa9956d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79caa9956dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79caa9956e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79caa9956ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79caa9956f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79caa9957010>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79caa99570a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79caa9957130>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79caa99571c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79caa9957250>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79caa99572e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79caa9957370>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79caaa0c0340>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVdwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjApvcnRob19pbml0lIl1Lg==",
|
26 |
+
"net_arch": {
|
27 |
+
"pi": [
|
28 |
+
256,
|
29 |
+
256
|
30 |
+
],
|
31 |
+
"vf": [
|
32 |
+
256,
|
33 |
+
256
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
37 |
+
"ortho_init": false
|
38 |
+
},
|
39 |
"num_timesteps": 1015808,
|
40 |
"_total_timesteps": 1000000,
|
41 |
"_num_timesteps_at_start": 0,
|
42 |
"seed": null,
|
43 |
"action_noise": null,
|
44 |
+
"start_time": 1698715967381656574,
|
45 |
+
"learning_rate": 2.9634285137411235e-05,
|
46 |
"tensorboard_log": null,
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYm/T02CLk+cBpavd7Byr6dQmA92oyYvAAAAAAAAAAAmpmwu6+QpT+GkSi9e4IXv2qkfLyyW0y9AAAAAAAAAAAmYyI+yPLhPdYMh75HY+S90zONvPWNpjwAAAAAAAAAAM3ymDw9W0e7934ovfpDHT3W44k8Js0DvgAAgD8AAIA/M59kPGNnkT/vMzw9kt9Av4aBnzz4bgy7AAAAAAAAAADmIlI9XCcYun774zqTfvA1FhYuO2niA7oAAIA/AACAP4j9ib4MdCk/ugeUvazpEb8MGOK+8R8kPgAAAAAAAAAAs7XYPU8SFT6mrj873/tKvvnLAD7mAwS+AAAAAAAAAAAAGTU+2d4iPnUAE77XJJW+qedfvYZC6z0AAAAAAAAAAM12Ur3oHaY/xK8Hv89lKr8Stg+8wPI3vgAAAAAAAAAAjQSnvcMBQLod3yezQ22Wr/Ml0rpErskzAACAPwAAgD+NcbC9rk2HuoH0vzaC/BEzAclJOPA54bUAAIA/AACAP5ohBrt4W8Y9G/Mvvir+T7616Ie9Mv1EPAAAAAAAAAAAs7HmPYrZDT43RSK9EUSRvghizDzz3G49AAAAAAAAAABAOfo9/qqHPxr8gD5TIzK/GAIVPqiSdL0AAAAAAAAAAGZCd73kngc+eknWvVCWJ77Z6ka9Ci4IvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
60 |
"_stats_window_size": 100,
|
61 |
"ep_info_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIw93OfNA2MAWyUTQ4BjAF0lEdAuIKfoV2zOXV9lChoBkdAcitX18LKFWgHS9NoCEdAuIKvO2RaHXV9lChoBkdAcYUAvtdAxGgHS7poCEdAuILpqagElnV9lChoBkdAc4mXsPatcWgHS9RoCEdAuIMSk690zXV9lChoBkdAcO3t4iX6ZmgHS8JoCEdAuIMiF49ovnV9lChoBkdAcJSBLwnYx2gHTTMBaAhHQLiDVxJNCZ51fZQoaAZHQHCBGQOnVG1oB0v6aAhHQLiDWUIcBEN1fZQoaAZHQFVmsA/9pAVoB0uKaAhHQLiDZKq4pc51fZQoaAZHQHLsrzTWoWJoB0vSaAhHQLiDahYNiH91fZQoaAZHQHLgu9SMtK9oB0v0aAhHQLiDcVDa4+d1fZQoaAZHQG7QfW+XZ5BoB0vBaAhHQLiDgMZgogF1fZQoaAZHQG7CKKpDNQloB0vLaAhHQLiDjGXXyy51fZQoaAZHQHFMfX05EMNoB0u7aAhHQLiEA1s+FDh1fZQoaAZHQEOuaNMoMKFoB0tnaAhHQLiEIgr6LwZ1fZQoaAZHQHPAUypJf6ZoB0vLaAhHQLiEIiG34Kx1fZQoaAZHQG2kRTjvNNdoB0vOaAhHQLiEdlKK5091fZQoaAZHQHJG8i0OVgRoB0vPaAhHQLiEsoB7u2J1fZQoaAZHQHBi5wGW2PVoB0vKaAhHQLiE33yI55t1fZQoaAZHQHJV4jrzGxVoB0vwaAhHQLiE7U4rBj51fZQoaAZHQHDNQmVqveRoB0vOaAhHQLiE9hP0qYt1fZQoaAZHQHJsjQNTcZdoB00yAWgIR0C4hQ/HYHxCdX2UKGgGR0BvZLxXnyNGaAdL0mgIR0C4hSNSl3yJdX2UKGgGR0Bk5v/rB0p3aAdN6ANoCEdAuIUjBN21UnV9lChoBkdAcRnSbH6uXGgHS+poCEdAuIUotdzGP3V9lChoBkdAceq163RXwWgHS9BoCEdAuIUtiBoVVXV9lChoBkdAbaWCtA9mpWgHTQwBaAhHQLiFgwj+rEN1fZQoaAZHQHKEUmplz2hoB0u6aAhHQLiFo+6RQrN1fZQoaAZHQHBui619fC1oB0vVaAhHQLiFuijcmBx1fZQoaAZHQGAVhy0a6z5oB03oA2gIR0C4hddKqXF+dX2UKGgGR0BtcUYht+CsaAdL12gIR0C4hdzIzWPMdX2UKGgGR0Bw08YpDu0DaAdLvWgIR0C4jEOj2zv7dX2UKGgGR0Bw0q6NEPUbaAdLv2gIR0C4jN0SVW0adX2UKGgGR0BzUjsw+MZQaAdLwmgIR0C4jPJjc2zfdX2UKGgGR0Bx0S2d/axpaAdL7GgIR0C4jVbD/EOzdX2UKGgGR0BxxjCj1wo9aAdL1WgIR0C4jWyNGViXdX2UKGgGR0BwX0+r2g3+aAdNCQFoCEdAuI1yxmkFfXV9lChoBkdAc2TdUbT+emgHS9hoCEdAuI1+IsRQJ3V9lChoBkdAcPg8rZrYXmgHS99oCEdAuI2I9aEBbXV9lChoBkdAccGQmeDnNmgHS+1oCEdAuI27q8lHBnV9lChoBkdAcReb+cYqG2gHTRIBaAhHQLiN+yPuG9J1fZQoaAZHQHFGQZbY9PloB0viaAhHQLiOFrTH80l1fZQoaAZHQHELCxZ+x4ZoB0u+aAhHQLiOKS1maph1fZQoaAZHQHEUQezUqhFoB0vhaAhHQLiOQe2uxKR1fZQoaAZHQHES9ovi97FoB0vfaAhHQLiOWqjJuEV1fZQoaAZHQHCcMjFAE+xoB0v2aAhHQLiOxmMfigl1fZQoaAZHQHFTuARTS9doB0vyaAhHQLiO5DGcWj51fZQoaAZHQHCG7yUcGTtoB0vKaAhHQLiPEKSxJNF1fZQoaAZHQHJkBeXzDoBoB0vbaAhHQLiPVc6vJRx1fZQoaAZHQG8EWwFC9h9oB0vKaAhHQLiPcwnH/951fZQoaAZHQHFkCROk+HJoB0vIaAhHQLiPgRDTjNp1fZQoaAZHQHHOiSaEzwdoB0vHaAhHQLiPjGN70Ft1fZQoaAZHQG5w5xzaK1poB0vHaAhHQLiPrYzBRAN1fZQoaAZHQHD6mOhkAghoB00AAWgIR0C4j+VfmcOLdX2UKGgGR0BxfH/m1YyPaAdNCAFoCEdAuI//okiUxHV9lChoBkdAcUL9d/rjYWgHS8poCEdAuJAhefI0ZXV9lChoBkdAciD+5e7cwmgHS/NoCEdAuJA/l8w6AHV9lChoBkdAcwCsKb8WK2gHS+5oCEdAuJBUIUrTY3V9lChoBkdAcVyRceKba2gHS/hoCEdAuJBWUW2w3nV9lChoBkdAc5Rhz/6wdWgHTRUBaAhHQLiQagoPTXt1fZQoaAZHQFcWDKYAsCloB03oA2gIR0C4kHjVUdaMdX2UKGgGR0BzfIomXw9aaAdLvGgIR0C4kIFvuPV/dX2UKGgGR0BxITrB0p3HaAdL82gIR0C4kKyAQQMAdX2UKGgGR0ByF+VrylN2aAdNFgFoCEdAuJD4wL3K0XV9lChoBkdAcOBL61stTWgHS/hoCEdAuJEKc0+C9XV9lChoBkdAczbc0tRNy2gHS89oCEdAuJEWBAfMfXV9lChoBkdAcjAwfhddFGgHTQUBaAhHQLiRN0bcXWR1fZQoaAZHQHGlV1bJOnFoB0v9aAhHQLiRQfcvduZ1fZQoaAZHQHDb+pS75EdoB0vDaAhHQLiRZQxvegt1fZQoaAZHQHH08an7521oB0vvaAhHQLiReAVfu1F1fZQoaAZHQHHvcvIwM6RoB0vraAhHQLiRhlLvkR11fZQoaAZHQHFWpZ8rqdJoB0vDaAhHQLiRkZIg/1R1fZQoaAZHQHHY3eizsyBoB006AWgIR0C4kZgf2bobdX2UKGgGR0ByrIevIOpbaAdLymgIR0C4kZoXj2i+dX2UKGgGR0Bwa8zBRAKOaAdLwWgIR0C4kbUeuFHsdX2UKGgGR0BzXhWKdhAoaAdL0GgIR0C4kcPZmI0qdX2UKGgGR0ByPrQID5j6aAdL/WgIR0C4kdLw4KhMdX2UKGgGR0BvryebutwKaAdLvGgIR0C4kdPp2U0OdX2UKGgGR0BylWCHymQ9aAdL9GgIR0C4keYFeOXFdX2UKGgGR0ByfMTg2qDLaAdLz2gIR0C4kip3cHnmdX2UKGgGR0BzOVYT0xubaAdLzmgIR0C4kkVpGnXNdX2UKGgGR0BvwxH7P6bfaAdL7WgIR0C4kmy+QEIPdX2UKGgGR0BxXWpgkTpQaAdL02gIR0C4knmQGOdYdX2UKGgGR0BxbHQ1JlJ6aAdL22gIR0C4knzJZGKAdX2UKGgGR0ByjKsmv4dqaAdLzGgIR0C4kpDIRywOdX2UKGgGR0Bxg+WmgrYoaAdLymgIR0C4kp/CEYfodX2UKGgGR0By5r6guh9LaAdLv2gIR0C4kq9iYsundX2UKGgGR0Bxugf4h2W6aAdLz2gIR0C4ksRzeXRgdX2UKGgGR0BzTHywwCbMaAdLvGgIR0C4ks30PH1fdX2UKGgGR0BwqQWpIczZaAdNAwFoCEdAuJMNVlwtKHV9lChoBkdAcZthNucc2mgHS9toCEdAuJMQXJo0ynV9lChoBkdAbw37dBSk02gHTQMBaAhHQLiTIre67NB1fZQoaAZHQHGJY6nzg/FoB0vqaAhHQLiTOeDFqBV1fZQoaAZHQHMllLJ0W/JoB0vsaAhHQLiTPqt5le51fZQoaAZHQG9E8SXdCVtoB0voaAhHQLiTTth/iHZ1fZQoaAZHQHOce5SWJJpoB0vHaAhHQLiTaEnssxx1fZQoaAZHQHN30DhcZ+BoB0vBaAhHQLiTmvllsgx1fZQoaAZHQHNUIDPnjhloB0vFaAhHQLiTr68QI2R1fZQoaAZHQGzUuuzQeFNoB00BAWgIR0C4k9sBhhH9dX2UKGgGR0ByR0/TspocaAdL0mgIR0C4k+l6Z6UrdX2UKGgGR0BzIHmzSkTIaAdLvWgIR0C4k+o371qWdWUu"
|
64 |
},
|
65 |
"ep_success_buffer": {
|
66 |
":type:": "<class 'collections.deque'>",
|
67 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
68 |
},
|
69 |
+
"_n_updates": 1240,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"dtype": "float32",
|
74 |
"bounded_below": "[ True True True True True True True True]",
|
75 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
94 |
"n_envs": 16,
|
95 |
"n_steps": 1024,
|
96 |
"gamma": 0.999,
|
97 |
+
"gae_lambda": 0.95,
|
98 |
+
"ent_coef": 2.231474738148853e-08,
|
99 |
+
"vf_coef": 0.8932129855308106,
|
100 |
"max_grad_norm": 0.5,
|
101 |
+
"batch_size": 256,
|
102 |
+
"n_epochs": 20,
|
103 |
"clip_range": {
|
104 |
":type:": "<class 'function'>",
|
105 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/TMzMzMzMzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
106 |
},
|
107 |
"clip_range_vf": null,
|
108 |
"normalize_advantage": true,
|
109 |
"target_kl": null,
|
110 |
"lr_schedule": {
|
111 |
":type:": "<class 'function'>",
|
112 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/EuSRbjx8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
113 |
}
|
114 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:335b7be8b34635e989131735f778e2240403975f25574ded170ac2a6ec700889
|
3 |
+
size 1109802
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67df324251ad41b885dd8f60a8f0a0285815f6c6b9f61c25e80b65206084d656
|
3 |
+
size 554482
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.1.0+
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 267.94467068826384, "std_reward": 23.54338225002002, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-31T01:54:52.230655"}
|