Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,96 @@
|
|
1 |
---
|
2 |
base_model: meta-llama/Llama-3.2-3B-Instruct
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
|
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
|
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
|
|
182 |
|
183 |
-
|
|
|
184 |
|
185 |
-
|
|
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
|
|
|
|
|
|
190 |
|
191 |
-
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
##
|
|
|
198 |
|
199 |
-
[More Information Needed]
|
200 |
### Framework versions
|
201 |
|
202 |
- PEFT 0.13.0
|
|
|
1 |
---
|
2 |
base_model: meta-llama/Llama-3.2-3B-Instruct
|
3 |
library_name: peft
|
4 |
+
language:
|
5 |
+
- ko
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
pipeline_tag: text-classification
|
10 |
---
|
11 |
|
12 |
# Model Card for Model ID
|
13 |
|
14 |
+
- llama3.2-3B ๋ชจ๋ธ์ prompt๋ฅผ ๊ณ ์ ํ๊ณ lora ๋ฐฉ์์ผ๋ก ํ์ตํ ๋ชจ๋ธ์
๋๋ค.
|
15 |
+
- ๊ธฐ์จ, ๋นํฉ, ๋ถ๋
ธ, ๋ถ์, ์์ฒ, ์ฌํ ์ด 6๊ฐ์ง ๊ฐ์ ์ ํ์ตํ์์ต๋๋ค.
|
16 |
+
- ๋ฐ์ดํฐ๋ AIHUB์ [๊ฐ์ฑ ๋ํ ๋ง๋ญ์น](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=86)๋ฅผ ์ฌ์ฉํ์ต๋๋ค.
|
17 |
+
- ๋์ด์ ์ฑ๋ณ๋ ํ์ต์ ์ฌ์ฉํ์ต๋๋ค.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## Uses
|
20 |
|
21 |
+
```
|
22 |
+
import re
|
23 |
+
import torch
|
24 |
+
from transformers import AutoTokenizer
|
25 |
+
from peft import AutoPeftModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
model = None
|
28 |
+
tokenizer = None
|
29 |
+
device = None
|
30 |
|
31 |
+
PROMPT="""<|prompt|>You are an AI assistant tasked with analyzing the emotional content of a diary entry. Your goal is to determine the most closely matching emotion from a predefined list.
|
32 |
|
33 |
+
Here is the diary entry you need to analyze:
|
34 |
|
35 |
+
<diary_entry>
|
36 |
+
age: {age} | gender: {gender} | diary: {sentence}
|
37 |
+
</diary_entry>
|
38 |
|
39 |
+
Please carefully read and analyze the content of this diary entry. Consider the overall tone, the events described, and the language used by the writer.
|
40 |
|
41 |
+
Based on your analysis, choose the emotion that best matches the overall sentiment of the diary entry from the following list:
|
42 |
|
43 |
+
['๋ถ๋
ธ', '๋ถ์', '์์ฒ', '์ฌํ', '๋นํฉ', '๊ธฐ์จ']
|
44 |
|
45 |
+
Translate these emotions to English for your understanding:
|
46 |
+
['๋ถ๋
ธ(anger)', '๋ถ์(anxiety)', '์์ฒ(hurt)', '์ฌํ(sadness)', '๋นํฉ(embarrassment)', '๊ธฐ์จ(happiness)']
|
47 |
|
48 |
+
After you've made your decision, respond with only the chosen emotion in Korean. Do not provide any explanation or additional text.
|
49 |
|
50 |
+
Your response should be formatted as follows:
|
51 |
+
<emotion>[chosen emotion in korean]</emotion>
|
52 |
|
53 |
+
Once you've provided the emotion, end the conversation. Do not engage in any further dialogue or provide any additional information.
|
54 |
+
<|assistant|>"""
|
55 |
|
56 |
+
def load_model():
|
57 |
+
global model, tokenizer, device
|
58 |
|
59 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
60 |
+
path = './llama-3.2-3B-sentiment_241105'
|
61 |
+
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
63 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
64 |
+
path,
|
65 |
+
attn_implementation="flash_attention_2",
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
device_map=device,
|
68 |
+
)
|
69 |
+
model.eval()
|
70 |
|
71 |
+
def generate(text, age, gender):
|
72 |
+
global model, tokenizer, device
|
73 |
+
text = PROMPT.format(age=age, gender=gender, sentence=text)
|
74 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
75 |
|
76 |
+
with torch.no_grad():
|
77 |
+
outputs = model.generate(**inputs, max_new_tokens=11, pad_token_id=tokenizer.pad_token_id)
|
78 |
+
decoded_output = tokenizer.decode(outputs[0])
|
79 |
|
80 |
+
try:
|
81 |
+
pred = decoded_output.split("<|assistant|>")[1]
|
82 |
+
pred = re.search(r'<emotion>(.*?)</emotion>', pred).group(1)
|
83 |
+
except:
|
84 |
+
pred = 'error'
|
85 |
+
|
86 |
+
return pred
|
87 |
|
88 |
+
print(generate("์ค๋ ์น๊ตฌ๋ ์ธ์ ์ด.", "", ""))
|
89 |
+
```
|
90 |
|
91 |
+
## Accuracy
|
92 |
+
๋ฐ์ดํฐ ํ์ต์ ์ผ๋ถ๋ฅผ ํ
์คํธ์ฉ ๋ฐ์ดํฐ๋ก ์ ํ๋ ์ธก์ ๊ฒฐ๊ณผ ์ฝ 70%๋ฅผ ๋ฌ์ฑํ์ต๋๋ค.
|
93 |
|
|
|
94 |
### Framework versions
|
95 |
|
96 |
- PEFT 0.13.0
|